CFD Analysis of the Combustion Process Evolved in the TKT-1 Academic Jet Engine
Copyright (c) 2025 Mhd Bashar Al Kazzaz, Veress Árpád

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Absztrakt
Combustion is a complicated process induced by a chemical reaction in which fuel combines with the oxidiser, usually oxygen already in the air to generate heat. Investigating combustion is important for increasing energy efficiency and a key component for further greener solutions and cleaner developments. With the help of CFD modelling, clearer visualisation and a better comprehension of thermal properties can be revealed. Understanding those specific thermal properties will allow the accurate and efficient comparison between different types of fuels. Hence, this paper aims to model the combustion in a TKT-1 research turbine engine using fossil standard fuels and collect the combustion emissions parameters to be able to conduct a correct comparison to the same process when sustainable fuels (SAFs) are used.
Kulcsszavak:
Hogyan kell idézni
Hivatkozások
[1] K. M. Bendtsen, E. Bengtsen, A. T. Saber, and U. Vogel, “A Review of Health Effects Associated with Exposure to Jet Engine Emissions In and Around Airports,” Environmental Health, Vol. 20, No. 1, p. 10, 2021. Online: https://doi.org/10.1186/s12940-020-00690-y
[2] B. Desmet, Thermodynamics of Heat Engines. John Wiley & Sons, 2022. Online: https://doi.org/10.1002/9781394188192
[3] R. Bering and K. Buskov, Numerical Investigation of the Soot Initiated Formation of Ultra Fine Particles in a Jet Turbine Engine Using Conventional Jet Fuel. Aalborg University, 2012. Online: https://vbn.aau.dk/ws/files/63474400/Rapportrasmusk_re.pdf
[4] M. Hajivand, CFD Modeling of Kerosene Combustion with Various Initial Conditions and Fuel Droplet Diameters. Online: https://www.academia.edu/45054347
[5] M. Venczel, G. Bicsák, and Á. Veress, “Coupled Fluid Dynamic and Heat Transfer Analysis of a Small-Sized Research Gas Turbine Combustion Chamber,” Repüléstudományi Közlemények, Vol. 29, No. 2, pp. 167–190, 2017.
[6] Z. Foroozan and Á. Veress, “Aerodynamic Redesign and Analysis of a Research Jet Engine – Virtual Prototyping of Gas Turbine Components,” Repüléstudományi Közlemények, Vol. 29, No. 2, pp. 309–330, 2017.
[7] ANSYS, Inc., CFX Combust Radiation Release 19.0 L01 Intro. 2020.
[8] Virtual Combustion and Atomization Laboratory IIT Kanpur, “Classification of Flame Types,” IITK, [s. a.]. Online: https://home.iitk.ac.in/~mishra/virtual_lab/documentor/introduction4.html
[9] N. Peters, Fifteen Lectures on Laminar and Turbulent Combustion. RWHT Aachen, 1992. Online: https://www.itv.rwth-aachen.de/fileadmin/Downloads/Summerschools/SummerSchool.pdf
[10] ANSYS, Inc., Ansys CFX-Solver Theory Guide. 2021. Online: https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/CFX/Ansys_CFX-Solver_Theory_Guide.pdf
[11] ANSYS, Inc., CFX Combust Radiation Release 19.0 L03 PDF Flamelet. 2018.
[12] ANSYS, Inc., CFX Combust Radiation Release 19.0 L05 Pollutants. 2020.
[13] K. Beneda and P. Balajti, “Experimental Study on the Effect of Water Injection on a Micro Turbojet Engine,” Repüléstudományi Közlemények, Vol. 33, No. 3, pp. 97–109. 2021. Online: https://doi.org/10.32560/rk.2021.3.8
[14] L. Moreno-Pacheco et al., “Design and Numerical Analysis of an Annular Combustion Chamber,” Fluids, Vol. 9, No. 7, p. 161, 2024. Online: https://doi.org/10.3390/fluids9070161
[15] S. Candel, D. Durox, and T. Schuller, Combustion Dynamics Lecture 1a. Université Paris-Saclay, 2019. Online: https://cefrc.princeton.edu/sites/g/files/toruqf1071/files/2019-1a-combdynintrouction_compressed.pdf
[16] S. Bhele, “Computational Fluid Dynamics Modeling of Combustion Chamber Using Biodiesel,” ICTEA: International Conference on Thermal Engineering, Vol. 1, No. 1, pp. 1–3, 2019. Online: https://journals.library.torontomu.ca/index.php/ictea/article/view/1202
[17] T. Zirwes et al., “Quasi-DNS Dataset of a Piloted Flame with Inhomogeneous Inlet Conditions,” Flow, Turbulence and Combustion, Vol. 104, No. 4, pp. 997–1027, 2020. Online: https://doi.org/10.1007/s10494-019-00081-5
[18] Z. Zhang and Q. Chen, “Comparison of the Eulerian and Lagrangian Methods for Predicting Particle Transport in Enclosed Spaces,” Atmospheric Environment, Vol. 41, No. 25, pp. 5236–5248, 2007. Online: https://doi.org/10.1016/j.atmosenv.2006.05.086
[19] ANSYS, Inc., CFX Combust Radiation Release 19.0 L09 Liquid Spray Combustion. 2020.