Lézerindukált plazmaspektrométer és ICP-tömegspektrométer alkalmazása kriminalisztikai vizsgálatokban

doi: 10.32577/mr.2023.4.3

Absztrakt

A korszerű elemanalitikai technikák alkalmazása a kriminalisztikai anyagvizsgálatban egyre hangsúlyosabb szerephez jut. A Nemzeti Szakértői és Kutató Központban 2021-ben üzembe helyezett lézerindukált plazmaspektrométerrel (LIBS) és induktív csatolású plazma-tömegspektrométerrel (ICP-MS) talajon, építőanyagon, üvegen, festéken, ragasztószalagon és biológiai anyagmaradványokon végzett vizsgálatok bizonyították a módszer használhatóságát az azonosító és összehasonlító vizsgálatokban. A nagy érzékenységű tömegspektrométeres nyomelem-analízis a korábban rendelkezésre álló módszereinkhez képest pontosabb vizsgálatot tesz lehetővé. A lézerablációs mintabevitellel az egyes mintarészletek, míg oldatos feltárással a teljes minta anyagának átlagos elemi (izotópos) összetétele mérhető. Tanulmányunkban bemutatjuk a LIBS- és ICP-MS-technikák működésének alapjait, valamint kriminalisztikai alkalmazásukat, az elmúlt években vizsgált eseteken keresztül.

Kulcsszavak:

kriminalisztika mikroanyagmaradvány elemanalitika lézerabláció plazma spketroszkópia

Hogyan kell idézni

Stadler, T., Zihné Perényi, K., Bozó, C., Molnár, A., Szoldán, Z., & Vörös, T. (2024). Lézerindukált plazmaspektrométer és ICP-tömegspektrométer alkalmazása kriminalisztikai vizsgálatokban. Magyar Rendészet, 23(4), 57–84. https://doi.org/10.32577/mr.2023.4.3

Hivatkozások

/2001. (X. 25.) Korm. rendelet az ivóvíz minőségi követelményeiről és az ellenőrzés rendjéről

ALLÈGRE, Claude (2008): Isotope Geology. Cambridge: Cambridge University Press. Online: https://doi.org/10.1017/CBO9780511809323

ALMIRALL, José R. – TREJOS, Tatiana (2016): Applications of LA‑ICP‑MS to Forensic Science. Elements, 12(5), 335–340. Online: https://doi.org/10.2113/gselements.12.5.335

BALCAEN, Lieve et al. (2015): Inductively Coupled Plasma – Tandem Mass Spectrometry (ICP-MS/MS): A Powerful and Universal Tool for the Interference-free Determination of (Ultra)Trace Elements – A Tutorial Review. Analytica Chimica Acta, 894, 7–19. Online: https://doi.org/10.1016/j.aca.2015.08.053

BERGSLIEN, Elisa (2012): An Introduction to Forensic Geoscience. [h. n.]: Wiley-Blackwell.

Best Practice Manual for Scene of Crime Examination. ENFSI-BPM-SOC-01 Version 01 – 2021. Online: https://enfsi.eu

BOZÓ Csaba (2008): Bioakkumuláció forenzikus jelentősége Parasarcophaga argyrostoma (Diptera: Sarcophagidae) lárvákban. MTA Akadémiai Beszámoló.

BOZÓ Csaba (1992): Hazai talajokon előforduló akkumulációs indikátor lágyszárú növényfajok különös tekintettel a Cd, Cr, Ni, Pb nehézfémek felvételére. Filantrop.

BRZEZICHA-CIROCKA, Justyna et al. (2019): Elemental Composition of Selected Species of Mushrooms Based on a Chemo-Metric Evaluation. Ecotoxicology and Environmental Safety, 173, 353–365. Online: https://doi.org/10.1016/j.ecoenv.2019.02.036

CADDY, Brian szerk. (2001): Forensic Examination of Glass and Paint. London: CRC Press. Online: https://doi.org/10.1201/9780203483589

COGNÉ, Nathan – GALLAGHER, Kerry (2021): Some Comments on the Effect of Uranium Zonation on Fission Track Dating by LA‑ICP‑MS. Chemical Geology, 573, 120226. Online: https://doi.org/10.1016/j.chemgeo.2021.120226

CORZO, R. et al. (2018): The Use of LA-ICP-MS Databases to Calculate Likelihood Ratios for the Forensic Analysis of Glass Evidence. Talanta, 186, 655–661. Online: https://doi.org/10.1016/j.talanta.2018.02.027

DE GIACOMO, A. et al. (2022): Real-Time Analysis of the Fine Particles in Volcanic Plumes: A Pilot Study of Laser Induced Breakdown Spectroscopy with Calibration-Free Approach (CF-LIBS). Journal of Volcanology and Geothermal Research, 432, 107675. Online: https://doi.org/10.1016/j.jvolgeores.2022.107675

DETALLE, Vincent – BAI, Xueshi (2022): The Assets of Laser-Induced Breakdown Spectroscopy (LIBS) for the Future of Heritage Science. Spectrochimica Acta Part B: Atomic Spectroscopy, 191, 106407. Online: https://doi.org/10.1016/j.sab.2022.106407

DUARTE, Juliana M. et al. (2020): Automotive Paint Analysis: How Far has Science Advanced in the Last Ten Years? Trends in Analytical Chemistry, 132(116061), 1–12. Online: https://doi.org/10.1016/j.trac.2020.116061

DWIVEDI, V. et al. (2022): LIBS Protocol for the Assessment of Depth Profile, Homogeneity, and Quantification of Fe/Co-based Bilayer Ribbon. Spectrochimica Acta Part B: Atomic Spectroscopy, 196, 106509. Online: https://doi.org/10.1016/j.sab.2022.106509

FABRE, Cécile et al. (2022): Handheld LIBS Analysis for In Situ Quantification of Li and Detection of the Trace Elements (Be, Rb and Cs). Journal of Geochemical Exploration, 236, 106979. Online: https://doi.org/10.1016/j.gexplo.2022.106979

FERREIRA, M. F. S. et al. (2022): Comprehensive Comparison of Linear and Non-Linear Methodologies for Lithium Quantification in Geological Samples Using LIBS. Spectrochimica Acta Part B: Atomic Spectroscopy, 195, 106504. Online: https://doi.org/10.1016/j.sab.2022.106504

GALBÁCS, Gábor szerk. (2022): Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences. Cham: Springer. Online: https://doi.org/10.1007/978-3-031-14502-5

GIRÓN, D. et al. (2018): In-Situ Monitoring and Characterization of Airborne Solid Particles in the Hostile Environment of a Steel Industry Using Stand-Off LIBS. Measurement, 115, 1–10. Online: https://doi.org/10.1016/j.measurement.2017.09.046

Glass Analysis Test No. 21-5481 Summary Report. Online: https://cts-forensics.com/reports/

HAMMER, Øyvind – HARPER, David A. T. – RYAN, Paul D. (2001): Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1–9. Online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm

HELIOS RYBICKA, E. – CALMANO, W. – BREEGER, A. (1995): Heavy Metals Sorption/Desorption on Competing Clay Minerals; An Experimental Study. Applied Clay Science, 9(5), 369–381. Online: https://doi.org/10.1016/0169-1317(94)00030-T

HUANG, Fang et al. (2022): Development of a Novel and Fast XRF Instrument for Large Area Heavy Metal Detection Integrated with UAV. Environmental Research, 214, 113841. Online: https://doi.org/10.1016/j.envres.2022.113841

KÁRMÁN Gabriella (2019): A kriminalisztikai szakértői bizonyítás. Budapest: Országos Kriminológiai Intézet.

KAZIMÍROVÁ, Mária – ORTEL, Johanna (2000): Metal Accumulation by Ceratitis Capitata (Diptera) and Transfer to the Parasitic Wasp Coptera Occidentalis (Hymenoptera). Environmental Toxicology and Chemistry, 19(7), 1822–1829. Online: https://doi.org/10.1002/etc.5620190716

KHAN, Anwarzeb et al. (2015): The Uptake and Bioaccumulation of Heavy Metals by Food Plants, Their Effects on Plants Nutrients, and Associated Health Risk: A Review. Environmental Science and Pollution Research, 22, 13772–13799. Online: https://doi.org/10.1007/s11356-015-4881-0

KOKKORIS, Vasilis et al. (2019): Accumulation of Heavy Metals by Wild Edible Mushrooms with Respect to Soil Substrates in the Athens Metropolitan Area (Greece). Science of the Total Environment, 685, 280–296. Online: https://doi.org/10.1016/j.scitotenv.2019.05.447

KOONS, Robert D. – PETERS, Charles A. – REBBERT, Pamela S. (1991): Comparison of Refractive Index, Energy Dispersive X‑Ray Fluorescence and Inductively Coupled Plasma Atomic Emission Spectrometry for Forensic Characterization of Sheet Glass Fragments. Journal of Analytical Atomic Spectrometry, 6, 451–456. Online: https://doi.org/10.1039/ja9910600451

LAMBERT, J. A. – EVETT, I. W. (1984): The Refractive Index Distribution of Control Glass Samples Examined by the Forensic Science Laboratories in the United Kingdom. Forensic Science International, 26(1), 1–23. Online: https://doi.org/10.1016/0379-0738(84)90207-X

LIZICZAY Sándor [é. n.]: A modern kriminalisztikai eszközök bizonyítékként történő értékelése a büntetőeljárásban. Online: https://adoc.pub/download/a-modern-kriminalisztikai-eszkzk-bizonyitekkent-trten-erteke.html

MARTINEZ-LOPEZ, C. – SAKAYANAGI, M. – ALMIRALL, J. R. (2018): Elemental Analysis of Packaging Tapes by LA-ICP-MS and LIBS. Forensic Chemistry, 8, 40–48. Online: https://doi.org/10.1016/j.forc.2018.01.004

MCINTEE, Erin et al. (2010): Comparative Analysis of Automotive Paints by Laser Induced Breakdown Spectroscopy and Nonparametric Permutation Tests. Spectrochim. Acta Part B: Atomic Spectroscopy, 65(7), 542–548. Online: https://doi.org/10.1016/j.sab.2010.04.021

MEHLTRETTER, Andria H. – BRADLEY, Maureen J. – WRIGHT, Diana M. (2011): Analysis and Discrimination of Electrical Tapes: Part II. Backings. Journal of Forensic Science, 56(6), 1493–1504. Online: https://doi.org/10.1111/j.1556-4029.2011.01873.x

MUKWATURI, Miriam – LIN, Chuxia (2015): Mobilization of Heavy Metals from Urban Contaminated Soils Under Water Inundation Conditions. Journal of Hazardous Materials, 285, 445–452. Online: https://doi.org/10.1016/j.jhazmat.2014.10.020

NI, Youyi et al. (2021): Trace Impurity Analysis in Uranium Materials by Rapid Separation and ICP-MS/MS Measurement with Matrix Matched External Calibration. Microchemical Journal, 169, 106615. Online: https://doi.org/10.1016/j.microc.2021.106615

Paint Analysis Test No. 22-5452 Summary Report. Online: https://cts-forensics.com/reports/

PYE, Kenneth et al. (2007): Discrimination between Sediment and Soil Samples for Forensic Purposes Using Elemental Data: An Investigation of Particle Size Effects. Forensic Science International, 167(1), 30–42. Online: https://doi.org/10.1016/j.forsciint.2006.06.005

REIDY, Lorlyn et al. (2013): Elemental Fingerprinting of Soils Using ICP-MS and Multivariate Statistics: A Study for and by Forensic Chemistry Majors. Forensic Science International, 233(1–3), 37–44. Online: https://doi.org/10.1016/j.forsciint.2013.08.019

REN, Jie – ZHAO, Yanru – YU, Keqiang (2022): LIBS in Agriculture: A Review Focusing on Revealing Nutritional and Toxic Elements in Soil, Water, and Crops. Computers and Electronics in Agriculture, 197, 106986. Online: https://doi.org/10.1016/j.compag.2022.106986

RIVERA-HERNÁNDEZ, Frances et al. (2019): Using ChemCam LIBS Data to Constrain Grain Size in Rocks on Mars: Proof of Concept and Application to Rocks at Yellowknife Bay and Pahrump Hills, Gale Crater. Icarus, 321, 82–98. Online: https://doi.org/10.1016/j.icarus.2018.10.023

SHABBIR, Sahar et al. (2022): Machine Learning and Transfer Learning for Correction of the Chemical and Physical Matrix Effects in the Determination of Alkali and Alkaline Earth Metals with LIBS in Rocks. Spectrochimica Acta Part B: Atomic Spectroscopy, 194, 106478. Online: https://doi.org/10.1016/j.sab.2022.106478

SMITH, Jenny M. (2007): Forensic Examination of Pressure Sensitive Tape. In BLACKLEDGE, Robert D. (szerk.): Forensic Analysis on the Cutting Edge: New Methods for Trace Evidence Analysis. 291–332. Online: https://doi.org/10.1002/9780470166932.ch12

SOHAL, R. S. – LAMB, R. E. (1979): Storage-Excretion of Metallic Cations in the Adult Housefly, Musca Domestica. Journal of Insect Physiology, 25(2), 119–124. Online: https://doi.org/10.1016/0022-1910(79)90089-1

Standard Test Method for Determination of Trace Elements in Soda-Lime Glass Samples Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Forensic Comparisons, ASTM-E2927 – 16.

Standard Test Method for Forensic Comparison of Glass Using Micro X-ray Fluorescence (µ-XRF) Spectrometry, ASTM E2926 – 17.

SUN, Zhenwen – QUAN, Yangke – SUN, Yuyou (2013): Elemental Analysis of White Electrical Tapes by Wavelength Dispersive X-Ray Fluorescence Spectrometry. Forensic Science International, 232(1–3), 169–172. Online: https://doi.org/10.1016/j.forsciint.2013.07.009

SZOLDÁN Zsolt (1998): Ólomlövedékek nyomelemtartalmának kriminalisztikai szempontú összehasonlító vizsgálata. Budapest: Budapesti Műszaki Egyetem Általános és Analitikai Kémiai Tanszék.

TELLOLI, Chiara et al. (2023): ICP-MS Triple Quadrupole as Analytical Technique to Define Trace and Ultra-Trace Fingerprint of Extra Virgin Olive Oil. Food Chemistry, 402, 134247. Online: https://doi.org/10.1016/j.foodchem.2022.134247

TREJOS, T. – CASTRO, W. – ALMIRALL, J. R. (2010): Elemental Analysis of Glass and Paint Materials by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) for Forensic Application. Miami, Florida: U.S. Department of Justice.

TSUJIKAWA, Kenji (2003): Morphological and Chemical Analysis of Magic Mushrooms in Japan. Forensic Science International, 138(1–3), 85–90. Online: https://doi.org/10.1016/j.forsciint.2003.08.009

VÖRÖS Tamás – SÁNDORNÉ KOVÁCS Judit (2020): Kriminalisztikai üvegvizsgálat a Nemzeti Szakértői és Kutató központban. Belügyi Szemle, 69(2), 177–194. Online: https://doi.org/10.38146/BSZ.2021.2.1

VÖRÖS Tamás et al. (2023): A hőkezelés alkalmazási lehetőségei a kriminalisztikai üvegvizsgálatokban. Belügyi Szemle, 71(1), 77–90. Online: https://doi.org/10.38146/BSZ.2023.1.4

WEBSTER, Lucy M. I. szerk. (2018): Standards and Guidelines for Wildlife Forensic Analysis, Version 3. Society for Wildlife Forensic Science.

XUE, Shengguo et al. (2023): Spatial Distribution, Environmental Risks, and Sources of Potentially Toxic Elements in Soils from a Typical Abandoned Antimony Smelting Site. Journal of Environmental Sciences, 127, 780–790. Online: https://doi.org/10.1016/j.jes.2022.07.009

ZAYED, Adel et al. (1998): Chromium Accumulation, Translocation and Chemical Speciation in Vegetable Crops. Planta, 206, 293–299. Online: https://doi.org/10.1007/s004250050403

Letöltések

Letölthető adat még nem áll rendelkezésre.