Application of Laser-Induced Plasma Spectrometer and ICP Mass Spectrometer in Forensic Investigations
Copyright (c) 2024 Stadler Tamás, Zihné Perényi Katalin, Bozó Csaba, Molnár Andrea, Szoldán Zsolt, Vörös Tamás
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
The use of modern elemental analytical techniques plays an increasingly prominent role in forensic investigations. Examinations on soils, construction materials, glass, paints,
adhesive tapes, and biological residues using a laser induced plasma spectrometer (LIBS) and an inductively coupled plasma mass spectrometer (ICP-MS) operating at the Hungarian Institute for Forensic Sciences since 2021,
has proved the usability of these methods both for identification and in comparative studies. The high-sensitivity mass spectrometric trace element analysis enables a more accurate examination compared to our previously available methods. The laser ablation method makes it possible to measure the elemental composition
of individual sample parts, while by using the solution technique, the average elemental (isotopic) composition of the entire sample can be measured. In our study, we present the basics of the LIBS and ICP-MS techniques, as well as their forensic applications, through cases investigated in recent years.
Keywords:
How to Cite
References
/2001. (X. 25.) Korm. rendelet az ivóvíz minőségi követelményeiről és az ellenőrzés rendjéről
ALLÈGRE, Claude (2008): Isotope Geology. Cambridge: Cambridge University Press. Online: https://doi.org/10.1017/CBO9780511809323
ALMIRALL, José R. – TREJOS, Tatiana (2016): Applications of LA‑ICP‑MS to Forensic Science. Elements, 12(5), 335–340. Online: https://doi.org/10.2113/gselements.12.5.335
BALCAEN, Lieve et al. (2015): Inductively Coupled Plasma – Tandem Mass Spectrometry (ICP-MS/MS): A Powerful and Universal Tool for the Interference-free Determination of (Ultra)Trace Elements – A Tutorial Review. Analytica Chimica Acta, 894, 7–19. Online: https://doi.org/10.1016/j.aca.2015.08.053
BERGSLIEN, Elisa (2012): An Introduction to Forensic Geoscience. [h. n.]: Wiley-Blackwell.
Best Practice Manual for Scene of Crime Examination. ENFSI-BPM-SOC-01 Version 01 – 2021. Online: https://enfsi.eu
BOZÓ Csaba (2008): Bioakkumuláció forenzikus jelentősége Parasarcophaga argyrostoma (Diptera: Sarcophagidae) lárvákban. MTA Akadémiai Beszámoló.
BOZÓ Csaba (1992): Hazai talajokon előforduló akkumulációs indikátor lágyszárú növényfajok különös tekintettel a Cd, Cr, Ni, Pb nehézfémek felvételére. Filantrop.
BRZEZICHA-CIROCKA, Justyna et al. (2019): Elemental Composition of Selected Species of Mushrooms Based on a Chemo-Metric Evaluation. Ecotoxicology and Environmental Safety, 173, 353–365. Online: https://doi.org/10.1016/j.ecoenv.2019.02.036
CADDY, Brian szerk. (2001): Forensic Examination of Glass and Paint. London: CRC Press. Online: https://doi.org/10.1201/9780203483589
COGNÉ, Nathan – GALLAGHER, Kerry (2021): Some Comments on the Effect of Uranium Zonation on Fission Track Dating by LA‑ICP‑MS. Chemical Geology, 573, 120226. Online: https://doi.org/10.1016/j.chemgeo.2021.120226
CORZO, R. et al. (2018): The Use of LA-ICP-MS Databases to Calculate Likelihood Ratios for the Forensic Analysis of Glass Evidence. Talanta, 186, 655–661. Online: https://doi.org/10.1016/j.talanta.2018.02.027
DE GIACOMO, A. et al. (2022): Real-Time Analysis of the Fine Particles in Volcanic Plumes: A Pilot Study of Laser Induced Breakdown Spectroscopy with Calibration-Free Approach (CF-LIBS). Journal of Volcanology and Geothermal Research, 432, 107675. Online: https://doi.org/10.1016/j.jvolgeores.2022.107675
DETALLE, Vincent – BAI, Xueshi (2022): The Assets of Laser-Induced Breakdown Spectroscopy (LIBS) for the Future of Heritage Science. Spectrochimica Acta Part B: Atomic Spectroscopy, 191, 106407. Online: https://doi.org/10.1016/j.sab.2022.106407
DUARTE, Juliana M. et al. (2020): Automotive Paint Analysis: How Far has Science Advanced in the Last Ten Years? Trends in Analytical Chemistry, 132(116061), 1–12. Online: https://doi.org/10.1016/j.trac.2020.116061
DWIVEDI, V. et al. (2022): LIBS Protocol for the Assessment of Depth Profile, Homogeneity, and Quantification of Fe/Co-based Bilayer Ribbon. Spectrochimica Acta Part B: Atomic Spectroscopy, 196, 106509. Online: https://doi.org/10.1016/j.sab.2022.106509
FABRE, Cécile et al. (2022): Handheld LIBS Analysis for In Situ Quantification of Li and Detection of the Trace Elements (Be, Rb and Cs). Journal of Geochemical Exploration, 236, 106979. Online: https://doi.org/10.1016/j.gexplo.2022.106979
FERREIRA, M. F. S. et al. (2022): Comprehensive Comparison of Linear and Non-Linear Methodologies for Lithium Quantification in Geological Samples Using LIBS. Spectrochimica Acta Part B: Atomic Spectroscopy, 195, 106504. Online: https://doi.org/10.1016/j.sab.2022.106504
GALBÁCS, Gábor szerk. (2022): Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences. Cham: Springer. Online: https://doi.org/10.1007/978-3-031-14502-5
GIRÓN, D. et al. (2018): In-Situ Monitoring and Characterization of Airborne Solid Particles in the Hostile Environment of a Steel Industry Using Stand-Off LIBS. Measurement, 115, 1–10. Online: https://doi.org/10.1016/j.measurement.2017.09.046
Glass Analysis Test No. 21-5481 Summary Report. Online: https://cts-forensics.com/reports/
HAMMER, Øyvind – HARPER, David A. T. – RYAN, Paul D. (2001): Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1–9. Online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm
HELIOS RYBICKA, E. – CALMANO, W. – BREEGER, A. (1995): Heavy Metals Sorption/Desorption on Competing Clay Minerals; An Experimental Study. Applied Clay Science, 9(5), 369–381. Online: https://doi.org/10.1016/0169-1317(94)00030-T
HUANG, Fang et al. (2022): Development of a Novel and Fast XRF Instrument for Large Area Heavy Metal Detection Integrated with UAV. Environmental Research, 214, 113841. Online: https://doi.org/10.1016/j.envres.2022.113841
KÁRMÁN Gabriella (2019): A kriminalisztikai szakértői bizonyítás. Budapest: Országos Kriminológiai Intézet.
KAZIMÍROVÁ, Mária – ORTEL, Johanna (2000): Metal Accumulation by Ceratitis Capitata (Diptera) and Transfer to the Parasitic Wasp Coptera Occidentalis (Hymenoptera). Environmental Toxicology and Chemistry, 19(7), 1822–1829. Online: https://doi.org/10.1002/etc.5620190716
KHAN, Anwarzeb et al. (2015): The Uptake and Bioaccumulation of Heavy Metals by Food Plants, Their Effects on Plants Nutrients, and Associated Health Risk: A Review. Environmental Science and Pollution Research, 22, 13772–13799. Online: https://doi.org/10.1007/s11356-015-4881-0
KOKKORIS, Vasilis et al. (2019): Accumulation of Heavy Metals by Wild Edible Mushrooms with Respect to Soil Substrates in the Athens Metropolitan Area (Greece). Science of the Total Environment, 685, 280–296. Online: https://doi.org/10.1016/j.scitotenv.2019.05.447
KOONS, Robert D. – PETERS, Charles A. – REBBERT, Pamela S. (1991): Comparison of Refractive Index, Energy Dispersive X‑Ray Fluorescence and Inductively Coupled Plasma Atomic Emission Spectrometry for Forensic Characterization of Sheet Glass Fragments. Journal of Analytical Atomic Spectrometry, 6, 451–456. Online: https://doi.org/10.1039/ja9910600451
LAMBERT, J. A. – EVETT, I. W. (1984): The Refractive Index Distribution of Control Glass Samples Examined by the Forensic Science Laboratories in the United Kingdom. Forensic Science International, 26(1), 1–23. Online: https://doi.org/10.1016/0379-0738(84)90207-X
LIZICZAY Sándor [é. n.]: A modern kriminalisztikai eszközök bizonyítékként történő értékelése a büntetőeljárásban. Online: https://adoc.pub/download/a-modern-kriminalisztikai-eszkzk-bizonyitekkent-trten-erteke.html
MARTINEZ-LOPEZ, C. – SAKAYANAGI, M. – ALMIRALL, J. R. (2018): Elemental Analysis of Packaging Tapes by LA-ICP-MS and LIBS. Forensic Chemistry, 8, 40–48. Online: https://doi.org/10.1016/j.forc.2018.01.004
MCINTEE, Erin et al. (2010): Comparative Analysis of Automotive Paints by Laser Induced Breakdown Spectroscopy and Nonparametric Permutation Tests. Spectrochim. Acta Part B: Atomic Spectroscopy, 65(7), 542–548. Online: https://doi.org/10.1016/j.sab.2010.04.021
MEHLTRETTER, Andria H. – BRADLEY, Maureen J. – WRIGHT, Diana M. (2011): Analysis and Discrimination of Electrical Tapes: Part II. Backings. Journal of Forensic Science, 56(6), 1493–1504. Online: https://doi.org/10.1111/j.1556-4029.2011.01873.x
MUKWATURI, Miriam – LIN, Chuxia (2015): Mobilization of Heavy Metals from Urban Contaminated Soils Under Water Inundation Conditions. Journal of Hazardous Materials, 285, 445–452. Online: https://doi.org/10.1016/j.jhazmat.2014.10.020
NI, Youyi et al. (2021): Trace Impurity Analysis in Uranium Materials by Rapid Separation and ICP-MS/MS Measurement with Matrix Matched External Calibration. Microchemical Journal, 169, 106615. Online: https://doi.org/10.1016/j.microc.2021.106615
Paint Analysis Test No. 22-5452 Summary Report. Online: https://cts-forensics.com/reports/
PYE, Kenneth et al. (2007): Discrimination between Sediment and Soil Samples for Forensic Purposes Using Elemental Data: An Investigation of Particle Size Effects. Forensic Science International, 167(1), 30–42. Online: https://doi.org/10.1016/j.forsciint.2006.06.005
REIDY, Lorlyn et al. (2013): Elemental Fingerprinting of Soils Using ICP-MS and Multivariate Statistics: A Study for and by Forensic Chemistry Majors. Forensic Science International, 233(1–3), 37–44. Online: https://doi.org/10.1016/j.forsciint.2013.08.019
REN, Jie – ZHAO, Yanru – YU, Keqiang (2022): LIBS in Agriculture: A Review Focusing on Revealing Nutritional and Toxic Elements in Soil, Water, and Crops. Computers and Electronics in Agriculture, 197, 106986. Online: https://doi.org/10.1016/j.compag.2022.106986
RIVERA-HERNÁNDEZ, Frances et al. (2019): Using ChemCam LIBS Data to Constrain Grain Size in Rocks on Mars: Proof of Concept and Application to Rocks at Yellowknife Bay and Pahrump Hills, Gale Crater. Icarus, 321, 82–98. Online: https://doi.org/10.1016/j.icarus.2018.10.023
SHABBIR, Sahar et al. (2022): Machine Learning and Transfer Learning for Correction of the Chemical and Physical Matrix Effects in the Determination of Alkali and Alkaline Earth Metals with LIBS in Rocks. Spectrochimica Acta Part B: Atomic Spectroscopy, 194, 106478. Online: https://doi.org/10.1016/j.sab.2022.106478
SMITH, Jenny M. (2007): Forensic Examination of Pressure Sensitive Tape. In BLACKLEDGE, Robert D. (szerk.): Forensic Analysis on the Cutting Edge: New Methods for Trace Evidence Analysis. 291–332. Online: https://doi.org/10.1002/9780470166932.ch12
SOHAL, R. S. – LAMB, R. E. (1979): Storage-Excretion of Metallic Cations in the Adult Housefly, Musca Domestica. Journal of Insect Physiology, 25(2), 119–124. Online: https://doi.org/10.1016/0022-1910(79)90089-1
Standard Test Method for Determination of Trace Elements in Soda-Lime Glass Samples Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Forensic Comparisons, ASTM-E2927 – 16.
Standard Test Method for Forensic Comparison of Glass Using Micro X-ray Fluorescence (µ-XRF) Spectrometry, ASTM E2926 – 17.
SUN, Zhenwen – QUAN, Yangke – SUN, Yuyou (2013): Elemental Analysis of White Electrical Tapes by Wavelength Dispersive X-Ray Fluorescence Spectrometry. Forensic Science International, 232(1–3), 169–172. Online: https://doi.org/10.1016/j.forsciint.2013.07.009
SZOLDÁN Zsolt (1998): Ólomlövedékek nyomelemtartalmának kriminalisztikai szempontú összehasonlító vizsgálata. Budapest: Budapesti Műszaki Egyetem Általános és Analitikai Kémiai Tanszék.
TELLOLI, Chiara et al. (2023): ICP-MS Triple Quadrupole as Analytical Technique to Define Trace and Ultra-Trace Fingerprint of Extra Virgin Olive Oil. Food Chemistry, 402, 134247. Online: https://doi.org/10.1016/j.foodchem.2022.134247
TREJOS, T. – CASTRO, W. – ALMIRALL, J. R. (2010): Elemental Analysis of Glass and Paint Materials by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) for Forensic Application. Miami, Florida: U.S. Department of Justice.
TSUJIKAWA, Kenji (2003): Morphological and Chemical Analysis of Magic Mushrooms in Japan. Forensic Science International, 138(1–3), 85–90. Online: https://doi.org/10.1016/j.forsciint.2003.08.009
VÖRÖS Tamás – SÁNDORNÉ KOVÁCS Judit (2020): Kriminalisztikai üvegvizsgálat a Nemzeti Szakértői és Kutató központban. Belügyi Szemle, 69(2), 177–194. Online: https://doi.org/10.38146/BSZ.2021.2.1
VÖRÖS Tamás et al. (2023): A hőkezelés alkalmazási lehetőségei a kriminalisztikai üvegvizsgálatokban. Belügyi Szemle, 71(1), 77–90. Online: https://doi.org/10.38146/BSZ.2023.1.4
WEBSTER, Lucy M. I. szerk. (2018): Standards and Guidelines for Wildlife Forensic Analysis, Version 3. Society for Wildlife Forensic Science.
XUE, Shengguo et al. (2023): Spatial Distribution, Environmental Risks, and Sources of Potentially Toxic Elements in Soils from a Typical Abandoned Antimony Smelting Site. Journal of Environmental Sciences, 127, 780–790. Online: https://doi.org/10.1016/j.jes.2022.07.009
ZAYED, Adel et al. (1998): Chromium Accumulation, Translocation and Chemical Speciation in Vegetable Crops. Planta, 206, 293–299. Online: https://doi.org/10.1007/s004250050403