The UAVs Path Planning Challenges and Possible Solutions

doi: 10.32560/rk.2023.3.4

Abstract

During my research I analysed the problems and the challenges of the UAV path planning. I am going to demonstrate the most common problems, which can come across during path planning. These problems include the Point Vehicle problem or the Jogger’s Problem. I am going to present the state-of-art path planning algorithms and solutions like Visible Graph or A*.

Keywords:

Path planning A* algorithm Q-Learning UAV

How to Cite

[1]
G. Mihályi, “The UAVs Path Planning Challenges and Possible Solutions”, RepTudKoz, vol. 35, no. 3, pp. 51–68, Sep. 2024.

References

T. Amukele, „Using Drones to Deliver Blood Products in Rwanda,” The Lancet Global Health, pp. e463–e464, 2022. Online: https://doi.org/10.1016/S2214-109X(22)00095-X

A. N. Albert et al., „Intricacies of Medical Drones in Healthcare Delivery: Implications for Africa,” Technology in Society, 51. szám, 66, p. 101624, 2021. Online: https://doi.org/10.1016/j.techsoc.2021.101624

„The Verge,” [Online]. Elérhető: https://www.theverge.com/sponsored/goldman-sachs-drones.

„Statista,” [Online]. Elérhető: https://shorturl.at/f0TuN

H. Xiaojian et al., „A UAV Dynamic Path Planning Algorithm,” in 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2020, pp. 127–131.

J. F. Shortle et al., „Simulating Collision Probabilities of Landing Airplanes at Nontowered Airports,” Simulation, pp. 21–31. 2004. Online: https://doi.org/10.1177/0037549704042028

B. M. Sathyaraj et al., „Multiple UAVs Path Planning Algorithms: A Comparative Study,” Fuzzy Optimization and Decision Making, pp. 257–267. 2008. Online: https://doi.org/10.1007/s10700-008-9035-0

S. Aggarwal, N. Kumar, „Path Planning Techniques for Unmanned Aerial Vehicles: A Review, Solutions, and Challenges,” Computer Communications, pp. 270–299. 2020. Online: https://doi.org/10.1016/j.comcom.2019.10.014

R. Szabolcsi, „3D Flight Path Planning For Multirotor UAV,” Review of the Air Force Academy, pp. 5–16, 2020. Online: https://doi.org/10.19062/1842-9238.2020.18.1.1

R. Szabolcsi, „Multirotoros pilóta nélküli légijárművek háromdimenziós repülési pályáinak számítógépes tervezése és szimulációja,” Hadtudomány, pp. 133–150. 2020. Online: https://doi.org/10.17047/HADTUD.2020.30.4.133

R. Szabolcsi, „Flight Path Planning for Small UAV Low Altitude Flights,” Repüléstudományi Közlemények, pp. 159–167. 2020. Online: https://doi.org/10.2478/raft-2020-0019

R. Szabolcsi, „Pilóta nélküli légi jármű kis magasságú repülési pályáinak tervezése,” Repüléstudományi Közlemények, 2020. Online: https://doi.org/10.32560/rk.2020.1.2

C. Goerzen, Z. Kong, B. Mettler, „A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance,” Journal of Intelligent and Robotic Systems, pp. 65–100. 2020. Online: https://doi.org/10.1007/s10846-009-9383-1

H. Liu et al., „An Autonomous Path Planning Method for Unmanned Aerial Vehicle Based on a Tangent Intersection and Target Guidance Strategy,” IEEE Transactions on Intelligent Transportation Systems, pp. 3061–3073. 2022. Online: https://doi.org/10.1109/TITS.2020.3030444

Bortoff, Scott, „Path Planning for UAVs,” American Control Conference, 2000. Proceedings of the 2000, pp. 364–368. 2000. Online: https://doi.org/10.1109/ACC.2000.878915

Balampanis et al., 2017 International Conference on Unmanned Aircraft Systems (ICUAS), 2017.

M. Rhinehart, Monte Carlo Testing of 2- and 3-dimensional Route Planners for Autonomous UAV Navigation in Urban Environments, Thesis (M.S.) University of Minnesota, 2008.

[Online]. Elérhető: https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/robotics/basicmotion.html.

Blasi et al., „Path Planning and Real-Time Collision Avoidance Based on the Essential Visibility Graph,” Applied Sciences, p. 5613. 2020. Online: https://doi.org/10.3390/app10165613

C. Xia, C. Xiangmin, „The UAV Dynamic Path Planning Algorithm Research Based on Voronoi Diagram,” The 26th Chinese Control and Decision Conference (2014 CCDC), pp. 1069–1071. 2014.

I. W. Geoffrey, C. Sammut, Encyclopedia of Machine Learning. Boston, MA: Springer US, 2010. Online: https://doi.org/10.1007/978-0-387-30164-8

V. Jeauneau, A. Kotenkoff, L. Jouanneau, „Path Planner Methods for UAVs in Real Environment,” FAC-PapersOnLine, pp. 292–297. 2018. Online: https://doi.org/10.1016/j.ifacol.2018.11.557

F. Daniel et al., „A Systematic Literature Review of A* Pathfinding,” Procedia Computer Science, pp. 507–514. 2021. Online: https://doi.org/10.1016/j.procs.2021.01.034

J. Borenstein, Y. Koren, „Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation,” Proceedings – IEEE International Conference on Robotics and Automation, pp. 1398–1404. 1991.

[Online]. Elérhető: http://www-personal.umich.edu/~johannb/vff&vfh.htm.

J. Borenstein, Y. Koren, „The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots,” IEEE Transactions on Robotics and Automation, pp. 278–288. 1991. Online: https://doi.org/10.1109/70.88137

T. Ahmad et al., „Drone Deep Reinforcement Learning: A Review,” Electronics, 2021. Online: https://doi.org/10.3390/electronics10090999

H. Xiaojian et al., „A UAV Dynamic Path Planning Algorithm,” in 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2020, pp. 127–131. Online: https://doi.org/10.1109/YAC51587.2020.9337581

Cetin et al., „Drone Navigation and Avoidance of Obstacles Through Deep Reinforcement Learning,” in 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), 2019, pp. 1–7. Online: https://doi.org/10.1109/DASC43569.2019.9081749

Downloads

Download data is not yet available.