Integration of UAS into Traffic of the Aerodrome
Copyright (c) 2023 Vas Tímea, Halászné Tóth Alexandra, Bali Tamás, Dudás Zoltán, Bottyán Zsolt, Gajdos Máté, Fekete Csaba
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
The integration of UASs (Unmanned Aircraft Systems) into civil and any special use of airspace have already started. Their integration into the air traffic management system is being done by reducing the risks that can be identified in the operational environment. UASs are seen as a threat in the airport environment, but their increasingly wide range of applications as work drones make them a more cost-effective and cheaper solution for many tasks. The conditions under which they can be integrated into airport traffic depend on many factors. In our research plan, we are working on the development of decision support solutions that model the use of UAS work drones and conventional aircraft in joint airspace and airports using VR, AR tools, risk assessment and mitigation solutions and specific ATC procedures. Our model airport uses the model for state flights as a starting point.
Keywords:
How to Cite
References
Eurocontrol Corus, U-space Concept of Operations. SESAR 4/9/2019
4/1998 (I. 16.) Korm. rendelet a magyar légtér igénybevételéről
SESAR, Delivering Drone Solutions for Smart and Sustainable Air Mobility, U-space Research and Innovation Portfolio. Luxembourg, Publications Office of the European Union, 2021. Online: https://www.sesarju.eu/sites/default/files/documents/reports/U-space%20RandI%20portfolio.pdf
SESAR, Concept of Operations for European UTM Systems, Final Version, CORUS, 2019. Online: https://www.sesarju.eu/sites/default/files/documents/u-space/CORUS%20ConOps%20vol2.pdf
Bali T., „Ajánlások az UAV-k biztonságos légi és földi üzemeléséhez szükséges (repülési) szabályokra,” Repüléstudományi Közlemények, 26. évf. 3. sz. pp. 7–12. 2013. Online: https://www.repulestudomany.hu/folyoirat/2013_3/2013-3-01-Bali_Tamas.pdf
Ancel, Ersin et al., Real-time Risk Assessment Framework for Unmanned Aircraft System (UAS) Traffic Management (UTM). AIAA AVIATION Forum, Denver, Colorado 2017. Online: https://doi.org/10.2514/6.2017-3273
Liliana, L., “A New Model of Ishikawa Diagram for Quality Assessment,” IOP Conference Series: Materials Science and Engineering, 161. évf. pp. 012099. Online: https://doi.org/10.1088/1757-899X/161/1/012099
Burin, J., “Being Predictive in a Reactive World,” ISASI Journal, 46. évf. 1. sz. 2013. Online: https://isasi.org/Documents/library/technical-papers/2012/1-Making-Safety-Predictive-in-a-Reactive-World-Jim-Buren.pdf
Kopardekar, P. et al., “Unmanned Aircraft System Traffic Management (UTM) Concept of Operations to Safely Enable Low Altitude Flight Operations,” 16th AIAA Aviation Technology, Integration, and Operation Conference, Washington, D.C., 2016. június 13–17. Online: https://doi.org/10.2514/6.2016-3292
Tomić, L., Čokorilo, O., Macura, D., “Runway Pavement Inspections Using Drone – Safety Issues and Associated Risks,” International Journal for Traffic and Transport Engineering, 10. évf. 3. sz. pp. 278–285. 2020. Online: https://doi.org/10.7708/ijtte.2020.10(3).02
S. V. Shvetsova, A. V. Shvetsov, “Ensuring Safety and Security in Employing Drones at Airports,” Journal of Transportation Security, 14. évf. 1–2. sz. pp. 41–53. 2021. Online: https://doi.org/10.1007/s12198-020-00225-z
Radnóti I., Faragó K., „A kockázatpercepció és a kockázatvállalás vizsgálata egy fegyveres testületnél,” Magyar Pszichológiai Szemle, 60. évf. 1–2. sz. pp. 29–50. Online: https://doi.org/10.1556/mpszle.60.2005.1-2.3
Vas T., Fekete Cs. Z., „UAV az ellenőrzött repülőtér forgalmában, avagy egy szimuláció tapasztalatai,” Repüléstudományi Közlemények, 25. évf. 2. sz. pp. 371–383. 2013. Online: https://www.repulestudomany.hu/kulonszamok/2013_cikkek/2013-2-28-Vas_Timea-Fekete_Csaba.pdf
Vas T., Fekete Cs. Z., Palik M. (szerk.), Kutatási jelentés a 3D TWR, és a LETVIS radar szimulátor berendezéseken végrehajtott légi forgalmi irányítói gyakorlatok kutatási eredményeiről. 2013.
Alonso, C. M., UAS Sensitivity to Wake Turbulence for Establishing Safety Distance Requirements. Universitat Politècnica de Catalunya Master in Aerospace Science & Technology. 2014. szeptember.
I. De Visscher, G. Winckelmans, V. Treve, A Simple Wake Vortex Encounter Severity Metric. Eleventh USA/Europe Air Traffic Management Research and Development Seminar (ATM2015).
Bottyán Zs. et. al., „Rutinszerű légköri vertikális profilmérések végrehajtására alkalmas drón mérőhálózat kialakítása,” Közlekedés és Mobilitás, 1. évf. 1. sz. pp. 1–11. 2022. Online: https://doi.org/10.55348/KM.16
European RPAS Steering Group, Roadmap for the Integration of Civil Remotely-Piloted Aircraft Systems into the European Aviation System. Final Report Annex 2. 2013. június. Online: https://www.sesarju.eu/sites/default/files/European-RPAS-Roadmap_Annex-2_130620.pdf