Overview of Reliability-Based Risk Assessment Methods and their Possible Application to Electronic Warfare Self-Protection Systems for Military Helicopters

doi: 10.32560/rk.2022.1.3

Abstract

 

There are many uncertainties surrounding electronic warfare self-protection (EWSP) systems for military helicopters, from the design process to the operational management of the equipment. Besides the traditional qualitative analyses, more sophisticated and novel techniques, like the fuzzy theory-based method are coming to the fore. This article aims to show a few possible methods for risk assessment of electronic warfare self-protection systems for military helicopters. 

Keywords:

electronic warfare fuzzy risk assessment reliability military helicopters

How to Cite

[1]
L. Domán, “Overview of Reliability-Based Risk Assessment Methods and their Possible Application to Electronic Warfare Self-Protection Systems for Military Helicopters”, RepTudKoz, vol. 34, no. 1, pp. 43–59, Nov. 2022.

References

[1] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, ‘Basic Concepts and Taxonomy of Dependable and Secure Computing’. IEEE Transactions on Dependable and Secure Computing, Vol. 1, no. 1. pp. 11–33. 2004. Online: https://doi.org/10.1109/TDSC.2004.2

[2] R. E. Ball, The Fundamentals of Aircraft Combat Survivability Analysis and Design. AIAA, 2003. Online: https://doi.org/10.2514/4.862519

[3] P. Bárkányi, Katonai elektronikai felderítő rendszerek műszaki megbízhatósága. PhD thesis, NKE KMDI, 2012. Online: https://doi.org/10.17625/NKE.2013.001

[4] Department of Defense, Guide for Achieving Reliability, Availability, and Maintainability. 03 August 2005. Online: https://ww.acqnotes.com/Attachments/DoD%20Reliability%20Availability%20and%20Maintainability%20(RAM)%20Guide.pdf

[5] L. Domán, ‘Helikopterek túlélőképességét befolyásoló tényezők elemzése’. Katonai Logisztika, Vol. 28, no. 1–2. pp. 131–150. 2020. Online: https://doi.org/10.30583/2020/1-2/131

[6] L. Domán, ‘Az Airbus H145M helikopter és a túlélőképesség’. Repüléstudományi Közlemények, Vol. 31, no. 1. pp. 85–102. 2019. Online: https://doi.org/10.32560/rk.2019.1.8

[7] L. Domán, ‘Katonai helikopterek komplex elektronikai hadviselés önvédelmi rendszereinek értékelése’. Repüléstudományi Közlemények, Vol. 33, no. 2. pp. 1–19. 2021. Online: https://doi.org/10.32560/rk.2021.2.4

[8] L. Domán, ‘A Mi–24 elektronikai hadviselési képességei és fejlesztési lehetőségei’, in Szemelvények a katonai műszaki tudományok eredményeiből II, ed. G. Hausner. Budapest, Ludovika Egyetemi Kiadó, 2021. pp. 99–115. Online: https://nkerepo.uni-nke.hu/xmlui/bitstream/handle/123456789/16208/905_KDMI_II_hallgatoi_tanulmanykotet.pdf

[9] L. Domán, L. Pokorádi and L. Szilvássy, ‘Repülőeszközök idegen-barát felismerésének kockázatát befolyásoló tényezők ok-okozati elemzése’. Repüléstudományi Közlemények, Vol. 31, no. 3. pp. 15–30. 2019. Online: https://doi.org/10.32560/rk.2019.3.650

[10] L. Domán, ‘Katonai helikopterek elektronikai hadviselés (önvédelmi rendszerek) értékelési szempontjaival összefüggő súlyszámok meghatározása Fuzzy AHP módszer felhasználásával’, in Szemelvények a katonai műszaki tudományok eredményeiből III, ed. L. Földi. Budapest, Ludovika Egyetemi Kiadó, 2022. pp. 1–20.

[11] EN 16602-30: 2018 ICS: 49.140 Space System and Operations Space Products Assurance – Dependability Standard.

[12] EN 62308:2007 Equipment Reliability. Reliability Assessment Methods.

[13] S. Gradel, B. Aigner and E. Stumpf, ‘Model-based Safety Assessment for Conceptual Aircraft Systems Design’. CEAS Aeronautical Journal, Vol. 13, no. 1. pp. 281–294. 2021. Online: https://doi.org/10.1007/s13272-021-00562-2

[14] J. Heikell, Electronic Warfare Self-protection of Battlefield Helicopters: A Holistic View. PhD dissertation, Espoo, Helsinki University of Technology, 2005. Online: https://indianstrategicknowledgeonline.com/web/isbn9512275465.pdf

[15] Hungarian Military Standards MSZ K 070 Military Purpose Appliance, Instruments, Kits and Equipment. General Technological Requirements, Checking and Examination Methods.

[16] Hungarian Military Standards MSZ K 066 Military Purpose Appliance, Instruments, Kits and Equipment. General Technological Requirements, Checking and Examination Methods. Reliability Demands.

[17] International Electrotechnical Commission, Electropedia, 192-01-22. Online: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=192-01-22

[18] ISO/IEC 31010:2019 – Risk Management. Risk Assessment Techniques.

[19] S. Kabir, Compositional Dependability Analysis of Dynamic Systems with Uncertainty. PhD thesis, University of Hull, 2016.

[20] S. Kabir and Y. Papadopoulos, ‘A Review of Applications of Fuzzy Sets to Safety and Reliability Engineering’. International Journal of Approximate Reasoning, Vol. 100. pp. 29–55. 2018. Online: https://doi.org/10.1016/j.ijar.2018.05.005

[21] S. Koçak, ‘Fuzzy Logic and its Mechatronics Engineering Applications’. Repüléstudományi Közlemények, Vol. 29, no. 2. pp. 41–48. 2017. Online: https://folyoirat.ludovika.hu/index.php/reptudkoz/article/view/4315

[22] Gy. Keszthelyi, ‘A Mi-24 típusú harcihelikopter hatékonysága korunk fegyveres konfliktusaiban III. rész. A helikopter önvédelmi rendszerei és alkalmazási hatékonyságuk’. Katonai Logisztika, Vol. 28, no. 4. pp. 5–57. 2020. Online: https://doi.org/10.30583/2020.4.005

[23] N. G. Law, Integrated Helicopter Survivability. PhD thesis, U.K., Cranfield University, 2011. Online: https://core.ac.uk/download/pdf/140841.pdf

[24] M. Lendvay, Katonai elektronikai rendszerek megbízhatóságelemzése. PhD thesis, ZMNE KMDI, 2006.

[25] M. Leimeister and A. Kolios, ‘A Review of Reliability-based Methods for Risk Analysis and their Application in the Offshore Wind Industry’. Renewable and Sustainable Energy Reviews, Vol. 91. pp. 1065–1076. 2018. Online: https://doi.org/10.1016/j.rser.2018.04.004

[26] MIL-STD-882E, Department of Defense, Standard Practice: System Safety.

Downloads

Download data is not yet available.