Objective Identification of Supercells Using Lightning Data

doi: 10.32560/rk.2022.3.8

Abstract

An average of 60–80 supercells are formed in Hungary every year, most of them are causing harmful weather phenomena in Hungary. Supercells deserve special attention for their predictability and recognition, as these thunderstorms are associated with most significant weather events, such as significant hailstorms, downbursts, and, in rare cases, mesocyclonal tornadoes. In our work, 124 Repüléstudományi Közlemények • 2022/3. szám
we were interested in the lightning characteristics of supercell thunderstorms, and we also set up an empirical scoring system to decide, based on real-time lightning data, whether a given thunderstorm cell is a supercell or not. By developing the lightning index, feeding the measured
data into the nowcasting system, a metric could be fitted to each thunderstorm cell, with the help of which a decision on the type and intensity of thunderstorms could be made simply by considering the lightning data.

Keywords:

supercell LINET IC lightning CG lightning CAPE mesoscale convective system lightning parameters mesocycle

How to Cite

[1]
M. Páll and F. Wantuch, “Objective Identification of Supercells Using Lightning Data”, RepTudKoz, vol. 34, no. 3, pp. 109–124, Jul. 2023.

References

Haines, E., “Point in Polygon Strategies,” in Graphics Gems IV. Heckbert, P. szerk., 1994. pp. 24–46. Online: https://doi.org/10.1016/B978-0-12-336156-1.50013-6

Horváth Á., A légköri konvekció. Országos Meteorológiai Szolgálat, 2007. p. 15

Csonka T., Kolláth K., „Transzpannon szörnyeteg”, avagy hosszú életű szupercellák 2008. július 14-én. Online : http://owww.met.hu/pages/bogacs20080714.php

MetNet. Online: https://www.metnet.hu/radarkep?year=2019&month=8&day=02

Archiv-Version des Animationstools. Online: http://www1.wetter3.de/archiv_gfs_dt.html

O’Rourke, J., “Point in Polygon,” in Computational Geometry in C (2nd Edition). Cambridge, Cambridge University Press, 1998. pp. 239–244.

Markowski, P., Richardson, Y., Mesoscale Meteorology in Midlatitudes. Vol. 2, Chichester, John Wiley & Sons, 2011. Online: https://doi.org/10.1002/9780470682104

Rotunno, R., J. B. Klemp, M. L. Weisman, A Theory for Strong, Long-Lived Squall Lines. Journal of the Atmospheric Sciences, 1988. 45, 463–485. Online: https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2

Akenine-Möller, T., Haines, E., Hoffman, N., “Ray/Polygon Intersection,” in Real-Time Rendering (3rd Edition). New York, CRC Press, 2008. pp. 967. Online: https://doi.org/10.1201/9781315365459

Franklin, W. R., PNPOLY – Point Inclusion in Polygon Test. WRFranklin, 2022. február 6. Online: https://wrfranklin.org/Research/Short_Notes/pnpoly.html

Doswell III, C., Moller, A., Przybylinski, R., A Unified Set of Conceptual Models for Variations on the Supercell Theme. in 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc. 1990. pp. 40–45.

Bluestein, H. B., Severe Convective Storms and Tornadoes. Berlin–Heidelberg, Springer, 2013. pp. 978–973. Online: https://doi.org/10.1007/978-3-642-05381-8

Markowski, P., Straka, J. M., Rasmussen, E. N., “Direct Surface Thermodynamic Observations within the Rear-Flank Downdrafts of Nontornadic and Tornadic Supercells,” Monthly Weather Review, 130. évf. 7. sz. pp. 1692–

2002. Online: https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2

Structure and Dynamics of Supercell Thunderstorms. Online: https://www.weather.gov/lmk/supercell/dynamics

Downloads

Download data is not yet available.