Facial Image Analysis and Facial Image Identification as a Classic Field of Forensics
Copyright (c) 2023 Mészáros Andrea, Petrétei Dávid
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Facial image analysis and identification are one of the most dynamically developing forensic fields of our time. This study aims to draw parallels between facial image identification and the so-called classic forensic expert fields. The classic fields of forensic expertise, the so-called pattern recognition methods, like latent print comparison or tool mark comparison, are not part of any science, the expert performs a visual comparison of image patterns, based on the ACE-V methodology. According to our thesis, the facial image identification analyzer works similarly.
Keywords:
How to Cite
References
Angyal Miklós szerk. (2019): Kognitív kriminalisztika. Ismeret – elmélet – történet. Budapest: Dialóg Campus.
Árendás Csaba et al. (2005): Integrált biometrikus azonosító rendszerek. Budapest: BME Mérés¬technikai és Információs Rendszerek Tanszék.
Best Practice Manual for Facial Image Comparison. ENFSI-BPM-DI-01 (2018). Online: https://enfsi. eu/wp-content/uploads/2017/06/ENFSI-BPM-DI-01.pdf
Deepak, Ghimire – Joonwhoan, Lee (2013): Geometric Feature-Based Facial Expression Recognition in Image Sequences Using Multi-Class AdaBoost and Support Vector Machines. Sensors, (6), 7714–7734. Online: https://doi.org/10.3390/s130607714
Dobó Judit – Gyaraki Réka (2021): A mesterséges intelligencia egyes felhasználási lehetőségei a rendvédelmi területeken. Magyar Rendészet, (4), 67–81. Online: https://doi.org/10.32577/ mr.2021.4.3
Gárdonyi Gergely (2020): Still Image Face Recognition in Hungary. Belügyi Szemle, (Special Issue 3), 22–33. Online: https://doi.org/10.38146/BSZ.SPEC.2020.3.2
Gárdonyi Gergely (2021): Az állóképes arcképazonosítás Magyarországon. Belügyi Szemle, 69(7), 1133–1148. Online: https://doi.org/10.38146/BSZ.2021.7.3
Gottumukkal, Rajkiran – Asari, Vijayan K. (2004): An Improved Face Recognition Technique based on Modular PCA Approach. Pattern Recognition Letters, 25(4), 429–436. Online: https:// doi.org/10.1016/j.patrec.2003.11.005
Hochreutiner, C. (2019): The History of Facial Recognition Technologies: How Image Recognition Got So Advanced. AnyConnect Academy, 2019. szeptember 19. Online: https://anyconnect. com/blog/the-history-of-facial-recognition-technologies
Huber, Roy A. (1959): Expert Witnesses – In Defence of Expert Witnesses in General and of Do¬cument Examiners in Particular. Criminal Law Quarterly, 2(3), 276–295.
Huber, Roy A. (1960): Expert Witnesses. Criminal Law Quarterly, 2(4), 449–451.
Jarmanning, Ally (2020): Boston Lawmakers Vote To Ban Use Of Facial Recognition Technology By The City. NPR, 2020. június 24. Online: https://www.npr.org/sections/live-updates-pro¬tests-for-racial-justice/2020/06/24/883107627/boston-lawmakers-vote-to-ban-use-of-fa¬cial-recognition-technology-by-the-city
Kertész Imre (2004): A tudományos bizonyíték. Belügyi Szemle, 52(11–12), 149–170.
Leon, Harmon (2020): How LSD, Nuclear Weapons Led to the Development of Facial Recognition. Observer, 2020. január 29. Online: https://observer.com/2020/01/facial-recognition-develop¬ment-history-woody-bledsoe-cia/
Lucas, Gary W. [é. n.]: An Introduction to the Delaunay Triangulation. Online: https://gwlucastrig. github.io/TinfourDocs/DelaunayIntro/index.html
Mészáros Andrea (2022): Arcképelemzés a rendészet szolgálatában. In Gaál Gyula – Hautzinger Zoltán (szerk.): Pécsi Határőr Tudományos Közlemények XXIV. Pécs: Magyar Hadtudományi Tár¬saság Határőr Szakosztály Pécsi Szakcsoportja, 147–152.
Mittal, Aditya (2020): Haar Cascades, Explained. Medium, 2020. december 21. Online: https:// medium.com/analytics-vidhya/haar-cascades-explained-38210e57970d
Németh Attila – Tóth Gergely (2019): Az arcfelismerő rendszerek alkalmazása. Belügyi Szemle, 67(1), 127–136. Online: https://doi.org/10.38146/BSZ.2019.1.10
Németh Ágota (2022): Az arcfelismerés szerepe a bűnügyi munkában. Magyar Rendészet, 22(2), 171–182. Online: https://doi.org/10.32577/mr.2022.2.11
Petrétei Dávid (2020): Gondolatok a kriminalisztikai azonosításelméletről. Belügyi Szemle, 68(2), 7–22. Online: https://doi.org/10.38146/BSZ.2020.2.1
Ranjani, S. (2021). A Study on Human Face Recognition Techniques. In Smys, S. et al. (szerk.): Computer Networks and Inventive Communication Technologies. (Lecture Notes on Data Engine¬ering and Communications Technologies 58.) Singapore: Springer, 853–864. Online: https:// doi.org/10.1007/978-981-15-9647-6_66
Shakeshaft, Nicholas G. – Plomin, Robert (2015): Genetic specificity of face recognition. PNAS (Proceedings of the National Academy of Sciences), 112(41), 12887–12892. Online: https://doi. org/10.1073/pnas.1421881112
Sirine, Ammar – Bouwmans, Thierry – Neji, Mahmoud (2022): Face Identification Using Data Augmentation Based on the Combination of DCGANs and Basic Manipulations. Informa¬tion, 13(8), 370. Online: https://doi.org/10.3390/info13080370
Taigman, Yaniv et al. (2014): DeepFace: Closing the Gap to Human-Level Performance in Face Verifi¬cation. Online: https://doi.org/10.1109/CVPR.2014.220
The RAND Tablet: iPad Predecessor (2018). RAND, 2018. szeptember 4. Online: www.rand.org/ blog/rand-review/2018/09/the-rand-tablet-ipad-predecessor.html
Thiyagarajan, R. – Arulselvi, S. – Sainarayanan, G. (2010): Gabor feature based classifica¬tion using statistical models for face recognition. Procedia Computer Science, 2, 83–93. Online: https://doi.org/10.1016/j.procs.2010.11.011
Triplett, Michelle – Cooney, Lauren (2006): The Etiology of ACE-V and its Proper Use: An Exploration of the Relationship Between ACE-V and the Scientific Method of Hypothesis Testing. Journal of Forensic Identification, 56(3), 345–355.