Review of Remote Sensing Technologies for the Acquisition of Very High Vertical Accuracy Elevation Data (DEM) in the Framework of the Precise – Remediation of Industrial Disasters – Part 1

doi: 10.32567/hm.2022.1.10

Absztrakt

In the last 10 years, the technological developments have  changed the paradigm in remote sensing science. Nowadays, very diverse technologies can be employed to  capture and/or extract very accurate terrain elevation data  and prepare digital elevation models. This article aims at  reviewing the existing remote sensing technologies which  could support disaster remediation (by excavation of the  soil) with very accurate elevation data acquisition. Ground  based technologies (like terrestrial laser scanning, InSAR  and SfM) and airborne technologies (airborne laser  scanning [ALS], UAV photogrammetric approach, UAV with  LiDAR) are reviewed. Their capacities are examined  according to the following technical criteria: spatial  efficiency, point density, accuracy and applicability in  disaster situation. 

Kulcsszavak:

remote sensing DEM industrial disaster remediation LiDAR photogrammetry UAV accuracy

Hogyan kell idézni

Lucas, G., Gergely, L., Lénárt, C., & Solymosi, J. (2022). Review of Remote Sensing Technologies for the Acquisition of Very High Vertical Accuracy Elevation Data (DEM) in the Framework of the Precise – Remediation of Industrial Disasters – Part 1. Hadmérnök, 17(1), 155–170. https://doi.org/10.32567/hm.2022.1.10

Hivatkozások

Ajayi, Oluibukun G, Akporode A Salubi, Alu F Angbas and Mukwedeh G Odigure, ‘Generation of accurate digital elevation models from UAV acquired low percentage overlapping images’. International Journal of Remote Sensing 38, no 8–10 (2017), 2029–2036. Online: https://doi.org/10.1080/01431161.2017.1285085

Alkan, Reha M and Gökçen Karsidag, ‘Analysis of the Accuracy of Terrestrial Laser Scanning Measurements’. FIG Working Week, 2012.

ASPRS Guidelines, Vertical Accuracy Reporting for Lidar Data, 2004. Online: https://www.asprs.org/a/society/committees/lidar/Downloads/Vertical_Accuracy_Reporting_for_Lidar_Data.pdf

Axelsson, Peter, ‘DEM generation from laser scanner data using adaptive tin models’. International Archives of Photogrammetry and Remote Sensing XXXIII, Part B3 2000), 85–92. Online: https://www.isprs.org/proceedings/XXXIII/congress/part4/111_XXXIII-part4.pdf

Baltensweiler, Andri, Lorenz Walthert, Christian Ginzler, Flurin Sutter, Ross S Purves and Marc Hanewinkel, ‘Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation’. Environmental Modelling & Software 95 (2017), 13–21. Online: https://doi.org/10.1016/j.envsoft.2017.05.009

Bater, Christopher W and Nicholas Coops C, ‘Evaluating error associated with LiDAR-derived DEM interpolation’. Computers & Geosciences 35, no 2 (2009), 289–300. Online: https://doi.org/10.1016/j.cageo.2008.09.001

Bernardini, Giulia, Pier P Ricci and Francesco Coppi, ‘A ground based microwave interferometer with imaging capabilities for remote measurements of displacements’. Proceedings of the Galahad Workshop within the 7th Geomatic Week and the 3rd International Geotelematics Fair (GlobalGeo), Barcelona, Spain, 20–23 February 2007.

Caltrans, Surveys manual, ‘Terrestrial laser scanning specifications’, June 2018. Online: https://dot.ca.gov/-/media/dot-media/programs/right-of-way/documents/ls-manual/15-surveys-a11y.pdf

Carrivick, Jonathan L, Mark W Smith and Duncan J Quincey, Structure from Motion in the Geosciences. Wiley-Blackwell, 2016. Online: https://doi.org/10.1002/9781118895818

Cuartero, Aurora, Julia Armesto, Pablo Rodríguez and Pedro Arias, ‘Error Analysis of Terrestrial Laser Scanning Data by Means of Spherical Statistics and 3D Graphs’. Sensors 10, no 11 (2010), 10128–10145. Online: https://doi.org/10.3390/s101110128

ESRI, ‘What is a TIN surface?’, s. a. Online: http://desktop.arcgis.com/en/arcmap/10.3/manage-data/tin/fundamentals-of-tin-surfaces.htm

Fowler, Ananda and Vladimir Kadatskiy, ‘Accuracy and error assessment of terrestrial, mobile and airborne LiDAR’. ASPRS 2011 Annual Conference Milwaukee, Wisconsin, 1–5 May 2011. Online:http://www.rieglusa.com/pdf/accuracy-and-error-assessment-of-terrestrial-mobile-and-airborne-lidar.pdf

GIM-International, The Current State of the Art in UAS-ased Laser Scanning. Online: http://www.gim-international.com/content/article/the-current-state-of-the-art-inuas-based-laser-scanning22.06.2016

GIM-International, UAS-based Lidar: A Market Update. Online: http://www.gim-international.com/content/news/uas-based-lidar-a-market-update

Hanssen, Ramon F, Radar Interferometry. Dordrecht: Springer, 2001. Online: https://doi.org/10.1007/0-306-47633-9

Hernández, Monserrat O, Deformation measurement and monitoring with Ground-Based SAR. PhD dissertation, Universitat Politècnica de Catalunya, 2012. Online: https://upcommons.upc.edu/bitstream/handle/2117/94594/TOMH1de1.pdf

Hilker, Thomas, Martin van Leeuwen, Nicholas C Coops, Michael A Wulder, Glenn J Newnham, David L B Jupp and Darius S Culvenor, ‘Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand’. Trees 24 (2010), 819–832. Online: https://doi.org/10.1007/s00468-010-0452-7

Hillemanna, Marcus and Boris Jutzia, ‘UCalMiCeL – Unified intrinsic and extrinsic calibration of a multi- camera-system and a laserscanner’. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W3 (2017), 17–24. Online: https://doi.org/10.5194/isprs-annals-IV-2-W3-17-2017

Hudzietz, Brance and Srikanth Saripalli, ‘An experimental evaluation of 3D terrain mapping with an autonomous helicopter’. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-1/C22 (2011), 137–142. Online: https://doi.org/10.5194/isprsarchives-XXXVIII-1-22-137-2011

Jaboyedoff, Michel, Thierry Oppikofer, Antonio Abellán, Marc-Henri Derron, Alex Loye, Richard Metzger and Andrea Pedrazzini, ‘Use of LIDAR in landslide investigations: a review’. Natural Hazards 61 (2012), 5–28. Online: https://doi.org/10.1007/s11069-010-9634-2

Józków, Grzegoz, Charles Toth and Dorota Grejner- Brzezinska, ‘UAS Topographic mapping with velodyne LiDAR sensor’. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences III-1 (2016), 201–208. Online: https://doi.org/10.5194/isprs-annals-III-1-201-2016

Kaasalainen, Sanna, Anttoni Jaakkola, Mikko Kaasalainen, Anssi Krooks and Antero Kukko, ‘Analysis of Incidence Angle and Distance Effects on Terrestrial Laser Scanner Intensity: Search for Correction Methods’. Remote Sensing 3, no 10 (2011), 2207–2221. Online: https://doi.org/10.3390/rs3102207

Kellerer-Pirklbauer, Andreas, Arnold Bauer and Herwig Proske, ‘Terrestrial laser scanning for glacier monitoring: Glaciation changes of the Gößnitzkees glacier (Schober group, Austria) between 2000 and 2004’. 3rd Symposion of the Hohe Tauern National Park. Conference Volume for Research in Protected Areas, 97–106. Online: https://www.zobodat.at/pdf/NP-Hohe-Tauern-Conference_3_0097-0106.pdf

Küng, Oliver, Christoph Strecha, Pascal Fua, Daniel Gurdan, Michael Achtelik, Klaus-Michael Doth and Jan Stumpf, ‘Simplified building models extraction from ultra-light UAV imagery’. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-1/C22 (2011), 217–222. Online: https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-217-2011

Li, Zhilin, Qing Zhu and Christopher Gold, Digital Terrain Modeling. Principles and Methodology. Boca Raton: CRC Press, 2005. Online: https://nguyenduyliemgis.files.wordpress.com/2014/11/digital-terrain-modeling-principles-and-methodology_2005.pdf

Lichti, Derek, ‘Terrestrial Laser Scanning’, Special issue. Remote Sensing (2011). Online: https://www.mdpi.com/journal/remotesensing/special_issues/terrestrial-laser-scanning

Liu, Xiaoye, ‘Airborne LiDAR for DEM generation: some critical issues’. Progress in Physical Geography 32, no 1 (2008), 31–49. Online: https://doi.org/10.1177/0309133308089496

Liu, Xiaoye and Zhenyu Zhang, ‘Lidar data reduction for efficient and high quality DEM generation’. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVII, Part B3b (2008). Online: https://eprints.usq.edu.au/4569/1/Liu_Zhang_ISPRS2008_PV.pdf

Liu, Xiaoye, Zhenyu Zhang, Jim Peterson and Shobhit Chandra, ‘The Effect of LiDAR Data Density on DEM Accuracy’. MODSIM07: International Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability, 10–13 December 2007, Christchurch, New Zealand. Online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.4833&rep=-rep1&type=pdf

Lizarazo, Ivan, Víctor Angulo and Jorge Rodríguez, ‘Automatic mapping of land surface elevation changes from UAV-based imagery’. International Journal of Remote Sensing 38, no 8 (2017), 2603–2622. Online: https://doi.org/10.1080/01431161.2016.1278313

Lucieer, Arko, Sharon Robinson, Darren Turner, Steve Harwin and Josh Kelcey, ‘Using a micro-UAV for ultra-high resolution multi-sensor observations of Antarctic moss beds’. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIX-B1 (2012), 429–433. Online: https://doi.org/10.5194/isprsarchives-XXXIX-B1-429-2012

Nagai, Masahiko, Ryosuke Shibasaki, Dinesh Manandhar and Huijing Zhao, ‘Development of Digital Surface and Feature Extraction by Integrating Laser Scanner and CCD Sensor with IMU’. Center for Spatial Information Science, The University of Tokyo (2004), 655–659. Online: https://www.isprs.org/proceedings/XXXV/congress/comm5/papers/655.pdf

Panholzer, Helmut and Alexander Prokop, ‘Wedge-filtering of geomorphologic terrestrial laser scan data’. Sensors 13, no 2 (2013), 2579–2594. Online: https://doi.org/10.3390/s130202579

Petras, Vaclav, Anna Petrasova, Justyna Jeziorska and Helena Mitasova, ‘Processing UAV and LIDAR point clouds in GRASS GIS’. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (2016), 945–952. Online: https://doi.org/10.5194/isprs-archives-XLI-B7-945-2016

Pinkerton, Mike, ‘Terrestrial Laser Scanning for Mainstream Land Surveying’. International Federation of Surveyors, FIG Congress 2010, Sydney, Australia, 11–16 April 2010. Online: https://fig.net/resources/monthly_articles/2010/august_2010/august_2010_pinkerton.pdf

Riegl, ‘Data Sheet RIEGL VZ-6000’, 01 September 2017. Online: https://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VZ-6000_Datasheet_2017-09-01.pdf

Rodríguez-Caballero, Emilio, Ashraf Afana, Sonia Chamizo, Albert Solé-Benet and Yolanda Canton, ‘A new adaptive method to filter terrestrial laser scanner point clouds using morphological filters and spectral information to conserve surface micro-topography’. SPRS Journal of Photogrammetry Remote Sensing 117 (2016), 141–148. Online: https://doi.org/10.1016/j.isprsjprs.2016.04.004

Rosen, Paul A, Scott Hensley, Ian R Joughin, Fuk K Li, Søren N Madsen, Ernesto Rodríguez and Richard M Goldstein, ‘Synthetic Aperture Radar Interferometry’. Proceedings of the IEEE 88, no 3 (2000), 333–382. Online: https://doi.org/10.1109/5.838084

Ruiz, Juan J, Luis Diaz-Mas, Francisco Perez and Antidio Viguria, ‘Evaluating the Accuracy of DEM Generation Algorithms from UAV Imagery’. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W2 (2013), 333–337. Online: https://doi.org/10.5194/isprsarchives-XL-1-W2-333-2013

Schroth, Franck, ‘Accuracy in Drone Mapping: What You Need to Know’. Drone Life, 07 February 2017. Online: https://dronelife.com/2017/02/06/accuracy-dronemapping-need-know/

Soudarissanane, Sylvie, Roderik Lindenbergh, Massimo Menenti and Peter Teunissen, ‘Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points’. ISPRS Journal of Photogrammetry and Remote Sensing 66, no 4 (2011), 389–399. Online: https://doi.org/10.1016/j.isprsjprs.2011.01.005

Tarchi, Dario, Haraksim Rudolf, Guido Luzi, Leandro Chiarantini, Peter Coppo and Alois J Sieber, ‘SAR interferometry for structural changes detection: a demonstration test on a dam’. IGARSS, Hamburg, Germany, 1999, 1522–1524.

Tully, Mike, ‘Just How Accurate Is LiDAR?’, 2012. Online: https://aerialservicesinc.com/2012/12/just-how-accurate-is-lidar/

Uysal, Murat and Nizar Polat, ‘Investigating Performance of Airborne Lidar Data Filtering with Triangular Irregular Network (TIN) Algorithm’. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7 (2014), 199–202. Online: https://doi.org/10.5194/isprsarchives-XL-7-199-2014

Weibao, Zuo, Li Yan, Li Zhilin and Ding Xiaoli, ‘Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review’. Sensors 9, no 2 (2009), 1259–1281. ONline: https://doi.org/10.3390/s90201259 ; DOI: https://doi.org/10.3390/s90201259

Westoby, Matthew J, James Brasington, Neil F Glasser, Michael J Hambrey and John M Reynolds, ‘‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications’. Geomorphology 179 (2012), 300– 314. Online: https://doi.org/10.1016/j.geomorph.2012.08.021

Xie,Weiming, Qing He, Keqi Zhang, Leicheng Guo, Xianye Wang, Jian Shen and Zheng Cui, ‘Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale’, Geomorphology 292 (2017), 47–58. Online: https://doi.org/10.1016/j.geomorph.2017.04.034