A mesterséges intelligencia felhasználása az információs és kibertérműveletekben – az orosz minta
Copyright (c) 2022 Bihaly Barbara
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Absztrakt
Napjainkban a legnagyobb veszély nem a kinetikus, hanem az információs térből érkezik. Az orosz hadsereg számára a védelmi eszköztár fő fegyvere az információ. Az információs műveletek koncepciója különleges helyet foglal el az orosz (és előtte a szovjet) katonai gondolkodásmódban. A mesterséges intelligencia mint a következő meghatározó technológia már a hadviselésben is megjelent. Az orosz hadsereg a mesterséges intelligencia katonai felhasználására való fejlesztésével beszállt az új típusú fegyverkezési versenybe, sajátos gondolkodásmódjával pedig új szintre léptette azt.
Kulcsszavak:
Hogyan kell idézni
Hivatkozások
Bendett, Samuel: Should the US Army Fear Russia’s Killer Robots? The National Interest, 2017a. november 8. Online: http://nationalinterest.org/blog/the-buzz/should-the-us-army-fear-russias-killer-robots-23098
Bendett, Samuel: Red Robots Rising: Behind the Rapid Development of Russian Unmanned Military Systems. The Strategy Bridge, 2017b. december 12. Online: https://thestrategybridge.org/the-bridge/2017/12/12/red-robots-rising-behind-therapid-development-of-russian-unmanned-military-systems
Bendett, Samuel: Red Robots Rising. RealClear Defence, 2017c. december 12. Online: https://www.realcleardefense.com/articles/2017/12/12/red_robots_risin_112770.html
Bershidsky, Leon: Take Elon Musk Seriously on the Russian AI Threat. Bloomberg, 2017. szeptember 5. Online: https://www.bloomberg.com/view/articles/2017-09-05/take-elonmusk-seriously-on-the-russian-ai-threat
Bezrukov, Andrei: Vyklyuchit’ Svet v Kremle: Chego Zhdat’ ot Kibervoyn [Turn off the Lights in the Kremlin: What to Expect from Cyberwar]. Gazeta, 2018. október 13. Online: https://www.gazeta.ru/comments/2018/10/12_a_12018991.shtml
Catania, Carlos A. – Carlos García Garino: Automatic Network Intrusion Detection: Current Techniques and Open Issues. Computers & Electrical Engineering, 38. (2012), 5. 1062–1072. Online: https://doi.org/10.1016/j.compeleceng.2012.05.013
Freedberg Jr., Sydney J.: Armed Robots: US Lags Rhetoric, Russia. Breaking Defense, 2017. október 18. Online: https://breakingdefense.com/2017/10/armed-robotsus-lags-rhetoric-russia/
Hoffmann, Jörg: Simulated Penetration Testing: From “Dijkstra” to “Turing Test++”. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS). 25. (2015), 1. 364–372. Online: https://doi.org/10.1609/icaps.v25i1.13684
Kumar, Gulshan – Krishan Kumar – Monika Sachdeva: The Use of Artificial Intelligence Based Techniques for Intrusion Detection: A Review. Artificial Intelligence Review, 34. (2010), 4. 369–387. Online: https://doi.org/10.1007/s10462-010-9179-5
Losev, Aleksandr: Voennii Iskusstvenii Intellekt [‘Military Artificial Intelligence’]. Arsenal Otechestva, 6. (2018), 32. 12–21.
Mascaro Steven – Ann E. Nicholso – Kevin B. Korb: Anomaly Detection in Vessel Tracks Using Bayesian Networks. International Journal of Approximate Reasoning, 55. (2014), 1. 84–98. Online: https://doi.org/10.1016/j.ijar.2013.03.012
Polyakova, Alina: Weapons of the Weak: Russian and AI-Driven Asymmetric Warfare. Brookings Institution, 2018. november 15. Online: https://www.brookings.edu/research/weapons-of-the-weak-russia-and-ai-driven-asymmetric-warfare/
Simonite, Tom: For Superpowers, Artificial Intelligence Fuels New Global Arms Race. Wired, 2017. szeptember 8. Online: https://www.wired.com/story/for-superpowers-artificial-intelligence-fuels-new-global-arms-race/
Sommer, Robin – Vern Paxson: Outside the Closed World: On Using Machine Learning for Network Intrusion Detection. In 2010 IEEE Symposium on Security and Privacy (SP). IEEE, 2010. 305–316. Online: https://doi.org/10.1109/SP.2010.25
Svenmarck, Peter – Linus Luotsinen – Mattias Nilsson – Johan Schubert: Possibilities and Challenges for Artificial Intelligence in Military Applications. In Proceedings of the 2018 NATO Big Data and Artificial Intelligence for Military Decision Making Specialists’ Meeting. 2018. 1–16.
Tekhnologii “Sudnogo Dnya”: Vooruzhennyye Sily Rossii Vnedryayut Iskusstvennyy Intellekt’ [‘Doomsday Technologies’: Russia’s Armed Forces Introduce Artificial Intelligence’], Yandex, 2018. március 16. Online: https://bit.ly/3slQkU6
Thomas, Timothy: Russia’s Information Warfare Strategy: Can the Nation Cope in Future Conflicts. Journal of Slavic Military Studies, 27. (2014), 1. 101–130. Online: https://doi.org/10.1080/13518046.2014.874845
Thornton, Rod – Marina Miron: Towards the ‘Third Revolution in Military Affairs’. The Russian Military’s Use of AI-Enabled Cyber Warfare. The RUSI Journal, 165. (2020), 3. 12–21. Online: https://doi.org/10.1080/03071847.2020.1765514
Tucker, Patrick: Russia Says It Will Field a Robot Tank that Outperforms Humans. Defense One, 2017. november 8. Online: https://www.defenseone.com/technology/2017/11/russia-robot-tank-outperforms-humans/142376/
Vooruzhennyye Sily RF Vnedryayut Tekhnologii Iskusstvennogo Intellekta. Voenniye Materialy, 2018. március 15. Online: https://warfiles.ru/176763-vooruzhen�-nye-sily-rf-vnedryayut-tehnologii-iskusstvennogo-intellekta.html
Williams, David P.: Underwater Target Classification in Synthetic Aperture Sonar Imagery Using Deep Convolutional Neural Networks. In Pattern Recognition (ICPR), 2016 23rd International Conference, Cancún, 2016. 2498–2503. Online: https://doi.org/10.1109/ICPR.2016.7900011