The Potential Flight Safety Risks Associated with Unmanned Aerial Vehicles and the Importance of Ensuring their Visibility
Copyright (c) 2025 Gajdács László

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Absztrakt
In recent decades, the airspace has become increasingly congested due to the exponential growth in air traffic. Furthermore, the advent of unmanned aerial vehicles (UAVs) has introduced a new dimension to aviation safety. The integration of UAVs into the traditional aviation system presents a multitude of challenges, necessitating the development of appropriate legal regulations, innovative technical solutions, and the implementation of special procedures to mitigate flight safety risks. With the advent of sophisticated systems and equipment, even small UAVs can be effectively monitored and tracked during flight. This enables the immediate and indirect environment surrounding the UAV to be identified, enhancing situational awareness and reducing the risk of collisions. Such solutions include various existing identification systems, such as FLARM,1 OGN,2 ADS-B3 and Remote ID.4 Additionally, special lighting systems on board drones can be employed as a solution, particularly for visual recognition and identification. By utilising these systems, visual surveillance can be extended, and drones can be more easily detected by their surroundings. The simultaneous use of the aforementioned solutions can further enhance the safe integration of drones in traditional traffic [1].
Kulcsszavak:
Hogyan kell idézni
Hivatkozások
Gajdács L., “Látni és láthatóvá válni megoldások drónokhoz,” Hadmérnök, Vol. 18, no. 4, pp. 517. 2023. Online: https://doi.org/10.32567/hm.2023.4.1
EASA, Concept of Operations for Drones, A Risk Based Approach to Regulation of Unmanned Aircraft. EASA Brochure, 29 May 2015. Online: https://www.easa.europa.eu/en/document-library/general-publications/concept-operations-drones
Wikipedia, Aviation safety. [s. a.]. Online: https://en.wikipedia.org/wiki/Aviation_safety
ICAO, Safety News. [s. a.]. Online: https://www.icao.int/safety/Pages/default.aspx
Gajdács L., Palik M., Dudás Z., “Drónok és hagyományos légi járművek közös légtérben történő alkalmazásának repülésbiztonsági kockázatai,” Repüléstudományi Közlemények, Vol. 33, no. 1, pp. 157–170. 2021. Online: https://doi.org/10.32560/rk.2021.1.12
J. Ferrigan, Safety Risk Assessment for UAV Operation. AeroTract Geospatial, April 2022.
Airclip.de, Flarm Module Aurora. [s. a.]. Online: https://www.airclip.de/FLARM-module-Aurora
ADS-B, Introduction to ADS-B. [s. a.]. Online: https://ads-b.aviation.govt.nz/introduction/#how-does-ads-b-work
Dudás Z., “Repülésbiztonsági veszélyek és kockázatok,” Repüléstudományi Közlemények, Vol. 15, no. 2, pp. 16. 2003. Online: https://www.repulestudomany.hu/kulonszamok/2003_cikkek/dudas_zoltan.pdf
Elsight, Compliance with FAA Remote ID Regulations. White Paper, 2022. Online: https://lp.elsight.com/hubfs/Remote_ID_White_Paper-1.pdf
Gajdács L., Major G., “Az UAV alkalmazásának kockázatai a biztonságtechnika területén,” Repüléstudományi Közlemények, Vol. 30, no. 2, pp. 101–112. 2018. Online: https://www.repulestudomany.hu/folyoirat/2018_2/2018-2-09-0497_Major_Gabor-Gajdacs_Laszlo.pdf
Békési B., Szilvássy L., Major G., Gajdács L., Jámbor K., “Munkadrónok egy modern légikikötő mindennapjaiban,” Honvédségi Szemle, Vol. 151, no. 3, pp. 27–41. 2023. Online: https://doi.org/10.35926/HSZ.2023.3.3
B. Békési, L. Szilvássy, G. Major, L. Gajdács, K. Jámbor, “Working Drones in a Modern Airport’s Daily Life,” in Transport Means 2022 Sustainability: Research and Solutions, Proceedings of the 26th International Scientific Conference: Part II, Ed., Ostaševičius, V., Kaunas: Leidykla Technologija, 2022, pp. 836–841.
Gajdács L., “Pilóta nélküli légi jármű érzékelésének lehetséges megoldásai,” Hadmérnök, Vol. 17, no. 4, pp.1728. 2022. Online: https://doi.org/10.32567/hm.2022.4.2
International Civil Aviation Organization, Doc 4444 ATM/501 Air Traffic Management. Fifteenth Edition, 2007.
The Open Glider Network’s official website. Online: https://www.glidernet.org/
M. Palik, G. Pongrácz, “Communication Issues of UAV Integration into Non Segregated Airspace,” Defense Resources Management in the 21st Century, Brasov, Romanian National Defense University, Regional Department of Defense Resources Management Studies, 2012, pp. 6974.
Békési B., Major G., “A drónok konfigurációi, alkalmazási területei,” in Műszaki Tudomány az Észak-kelet Magyarországi Régióban 2022: Konferenciakiadvány, Nyíregyháza, 2022. 06. 02. (Nyíregyházi Egyetem Műszaki és Agrártudományi Intézet, Magyar Tudományos Akadémia [MTA] Debreceni Területi Bizottság [DAB] Műszaki Szakbizottsága), Páy G. Ed., Nyíregyháza, Magyarország: Nyíregyházi Egyetem, 2022, pp. 301–307.
Békési B., Papp I., Szegedi P., “UAV-k légi és földi üzemeltetése,” Economica, Vol. 6, no. 2, pp. 99–117. 2013. Online: https://doi.org/10.47282/ECONOMICA/2013/6/2/4422
Békési B., Novák M., Kárpáti A., Zsigmond Gy., “Investigation of the Reliability of UAVs,” Proceedings of the 16th International Conference Transport Means 2012. Kaunas, Lithuania, 2012, pp. 101–103.
Gajdács L., “A drónok vizuális láthatóságának jelentősége,” Repüléstudományi Közlemények, Vol. 35, no. 2, pp.157–168. 2023. Online: https://doi.org/10.32560/rk.2023.2.17