Environmental Impact Management of Integrated Airports

doi: 10.32560/rk.2024.1.1

Abstract

As the applications of UAV/drone developments accelerate, their integration into the entire military and civil aviation is an increasingly important task. At the recommendation of aeronautical research institutes and researchers, the aviation authorities have already created a series of rules and issued instructions to the so-called drone operators with the aim of operating integrated airports safely, efficiently and minimising environmental impact. The presentation deals with the management of the environmental impact of integrated airports. It examines the characteristics of integrated airports, the estimation procedures of the environmental load, the possibilities of reducing the load, the management of the minimisation of the environmental load. The new content of the presentation is the application of the specific, full life cycle calculation procedure of the environmental load in connection with the flight procedures. The results contribute to the development and application of management procedures that reduce environmental impact.

Keywords:

UAV drone integrated airport environmental impact environmental impact management

How to Cite

[1]
Z. Faltin, J. Rohács, and L. Kavas, “Environmental Impact Management of Integrated Airports”, RepTudKoz, vol. 36, no. 1, pp. 5–17, Apr. 2025.

References

Bera J., Légi közlekedés környezetbiztonsági kapcsolatrendszerének modellezése a helikopterzaj tükrében. PhD disszertáció, Óbudai Egyetem 2015. Online: https://oda.uni-obuda.hu/bitstream/handle/20.500.14044/10100/Bera_Jozsef_PhD.pdf?sequence=1

Budapest Airport, Noise map Budapest. [é. n.]. Online: https://www.bud.hu/en/budapest_airport/responsibility/environmental_responsibility/noise_protection/noise_map

M. W. Burkle, T. E. Montgomery, „The Integrated Airport – A NextGen Test Bed,” in 2008 Integrated Communications, Navigation and Surveillance Conference, pp. 1–7. 2008. Online: https://doi.org/10.1109/ICNSURV.2008.4559154

C.-A. Ciolponea, „The Integration of Unmanned Aircraft System (UAS) in Current Combat Operations,” Land Forces Academy Review, 27. évf. 4. sz. pp. 333–347. 2022. Online: https://doi.org/10.2478/raft-2022-0042

Eurocontrol, U-space ConOps CORUS-XUAM project D4.1. 2022. Online: https://corus-project.eu/wp-content/uploads/2022/11/CORUS-XUAM-D4.1-delivered_3.10.pdf

Federal Aviation Administration, National Plan of Integrated Airport Systems (NPIAS) 2009–2013. Report to Congress. 2008. Online: https://www.faa.gov/sites/faa.gov/files/airports/planning_capacity/npias/current/npias_2009_narrative.pdf

Federal Aviation Administration, Integration of Civil Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) Roadmap. Third Edition, 2020.

K. Neubauer, D. Fleet, F. Grosoli, H. Verstynen, Unmanned Aircraft Systems (UAS) at Airports: A Primer. (1–ACRP Repoprt 144), ACPR – Airport Cooperation Research Program, TRB – Transport Research Board, 2015. Online: https://doi.org/10.17226/21907

Palik M., Rohács J. „UAV, UAS, RPA, drón, robotrepülőgép – új technológiák alkalmazása 1.,” és 2. rész. Haditechnika, 56. évf. 6. sz. pp. 21–26. 2022. Online: https://doi.org/10.23713/HT.56.6.04

J. Rohacs, „Emission Scattering Simulation for Airport Region,” in ICAS 2002 Congress Proceedings, CD-ROM, 7112.1-7112.6. pp. 1–6. 2002. Online: https://www.icas.org/icas_archive/ICAS2002/PAPERS/7112.PDF

J. Rohács, D. Rohács, „Total Impact Evaluation of Transportation Systems,” Transport, 35. évf. 2. sz. pp. 193–202. 2020. Online: https://doi.org/10.3846/transport.2020.12640

P. Satam, „1 Drone, 2 Fighters: China’s J-16 Jets, Wing Loong-2 UAV Conduct Joint Strike Mission In First-Of-Its-Kind Military Drills,” Eurasian Times, 2023. augusztus 13. Online: https://www.eurasiantimes.com/1-drone-2-fighters-chinas-j-16-jets-wing-loong-2-uav-conduct-joint-strike-mission-in-first-of-its-kind-military-drills/

R. Gurály, M. Hideg, J. Rácz, Aeronautics Related RTD Activities in Hungary. 2006. Online: https://www.airtn.eu/wp-content/uploads/2016/01/f53.pdf

D. Rohacs, „Technology and Solution-Driven Trends in Sustainable Aviation,” Aircraft Engineering and Aerospace Technology, 95. évf. 3. sz. pp. 416–430. 2023. Online: https://doi.org/10.1108/AEAT-07-2022-0185

Downloads

Download data is not yet available.