The New Era of the Aviation Industry: Innovation in Graphene
Copyright (c) 2025 Csató Péter

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Among the multitude of two-dimensional materials, graphene has garnered significant scientific interest over the past three decades due to its remarkable properties. Its discovery has catalysed a profound expansion and diversification within materials research and nanotechnology. Currently, several research projects are dedicated to explore the potential applications of graphene, thereby significantly advancing both the military and civil aviation sectors in addition to technological innovation. After presenting the structure and primary properties of graphene, this paper outlines the expected applications in aviation industry focusing on power systems, sensors and materials used on the outer surface of the aircraft.
Keywords:
How to Cite
References
S. Y. Gao, et al., Research Status and Prospect of Graphene Materials in Aviation. Cornell University, 2022.
P. R. Wallace, „The Band Theory of Graphite,” Physical Review, 71. évf. 9. sz. pp. 622–634. 1947. Online: https://doi.org/10.1103/PhysRev.71.622
L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry. New York, Cornell University Press, 1960.
K. S. Novoselov, et al., „Electric Field Effect in Atomically Thin Carbon Films,” Science, 306. évf. 5696. sz. pp. 666–669. 2004. Online: https://doi.org/10.1126/science.1102896
Dobrik, G., Szén alapú nanoarchitektúrák kialakítása és jellemzése pásztázószondás módszerekkel. Budapest, Eötvös Lóránt Tudományegyetem, 2015. Online: https://doi.org/10.15476/ELTE.2014.088
H. Boehm, „Graphene – How a Laboratory Curiosity Suddenly Became Extremely Interesting,” Angewandte Chemie International Edition, 49. évf. 49. sz. pp. 9332–9335. 2010. Online: https://doi.org/10.1002/anie.201004096
A. Masuk, D. G. Husi, „Aero Graphene in Modern Aircraft & UAV,” Recent Innovations in Mechatronics, 9. évf. 1. sz. pp. 1–5. 2022. Online: https://doi.org/10.17667/riim.2022.1/4.
S. Zheng, et al., „Graphene-Based Materials for High-Voltage and High-Energy Asymmetric Supercapacitors,” Energy Storage Materials, 6. évf. pp. 70–97. 2017. Online: https://doi.org/10.1016/j.ensm.2016.10.003
M. Soota, „The Quest for Supercarbon in Aviation,” International Journal of Aerospace and Mechanical Engineering, 7. évf. 1. sz. pp. 10–13. 2020.
K. Lee, et al., „Highly Transparent and Flexible Supercapacitors Using Graphene-Graphene Quantum Dots Chelate,” Nano Energy, 26. évf. pp. 746–754. 2016. Online: https://doi.org/10.1016/j.nanoen.2016.06.030
Magyar Napelem és Napkollektor Szövetség, Fotovoltaikus jelentése. 2020. január 20. Online: https://www.mnnsz.hu/fotovoltaikus-jelentese/
J. Dréon, et al., „23.5%-Efficient Silicon Heterojunction Silicon Solar Cell Using Molybdenum Oxide as Hole-Selective Contact,” Nano Energy, 70. évf. p. 104495. 2020. Online: https://doi.org/10.1016/j.nanoen.2020.104495
L. Ponyaev, et al., „Graphene Technology for Design Efficiency of the Solar Hybrid Electrical Cryoplane and Airships,” IOP Conference Series: Materials Science and Engineering, 1226. évf. 2022. Online: https://doi.org/10.1088/1757-899X/1226/1/012063
G. T. Chavan, et al., „A Brief Review of Transparent Conducting Oxides (TCO): The Influence of Different Deposition Techniques on the Efficiency of Solar Cells,” Nanomaterials, 13. évf. 7. sz. p. 1226. 2023. Online: https://doi.org/10.3390/nano13071226
K. P. Loh, et al., „Graphene and Graphene-like Molecules: Prospects in Solar Cells,” Journal of American Chemical Society, 138. évf. 4. sz. pp. 1095–1102. 2016. Online: https://doi.org/10.1021/jacs.5b10917
M. I. Baranov, „A Choice of Acceptable Sections of Electric Wires and Cables in On-Board Circuits of Aircraft Electrical Equipment,” Electrical Engineering & Electromechanics, 1. évf. pp. 39–46. 2020. Online: https://doi.org/10.20998/2074-272X.2020.1.06
N. Mishra, et al., „Industrial Graphene Coating of Low-Voltage Copper Wires for Power Distribution,” ACS Applied Engineering Materials, 1. évf. 7. sz. pp. 1937–1945. 2023. Online: https://doi.org/10.1021/acsaenm.3c00249
K. G. Ong, et al., „A Wireless, Passive Carbon Nanotube-Based Gas Sensor,” IEEE Sensors Journal, 2. évf. 2. sz. pp. 82–88. 2002. Online: https://doi.org/10.1109/JSEN.2002.1000247
S. Z. N. Demon, et al., „Graphene-Based Materials in Gas Sensor Applications: A Review,” Sensors and Materials, 32. évf. 2. sz. pp. 759–777. 2020. Online: https://doi.org/10.18494/SAM.2020.2492
L. Li, M. Chakik, R. Prakash, „A Review of Corrosion in Aircraft Structures and Graphene-Based Sensors for Advanced Corrosion Monitoring,” Sensors, 21. évf. 9. sz. p. 2908. 2021. Online: https://doi.org/10.3390/s21092908
A. Mehmood, et al., „Graphene Based Nanomaterials for Strain Sensor Application – A Review,” Journal of Environmental Chemical Engineering, 8. évf. 3. sz. p. 103743. 2020. Online: https://doi.org/10.1016/j.jece.2020.103743
X.-W. Fu, et al., „Strain Dependent Resistance in Chemical Vapor Deposition Grown Graphene,” Applied Physics Letters, 99. évf. 21 sz. p. 213107. 2011. Online: https://doi.org/10.1063/1.3663969
M. A. O’Mara, et al., „Ultrasensitive Strain Gauges Enabled by Graphene‐Stabilized Silicone Emulsions,” Advanced Function Materials, 30. évf. 32. sz. p. 2002433. 2020. Online: https://doi.org/10.1002/adfm.202002433
X. Duan, et al., „Synergistically Enhanced Thermal Control Ability and Mechanical Properties of Natural Rubber for Tires Through a Graphene/Silica with a Dot-Face Structure,” Advanced Composites and Hybrid Materials, 5. évf. 2. sz. pp. 1145–1157. 2022. Online: https://doi.org/10.1007/s42114-022-00453-y
A. Trilok, et al., „Use of Graphene in Aircraft Structures for Enhanced Lightning Strike Protection – An Overview,” International Journal of Technology and Emerging Sciences, 2. évf. 2. sz. pp. 6–8. 2022.
S. A. Hodge, et al., Trajectory of Graphene-Based Aerospace Applications. Executive summary, Versairen plc, 2020. Online: https://www.versarien.com/files/7115/9741/2495/Whitepaper_Aerospace_applications_VRS.pdf
Z. Duan, „Application of Graphene in Metal Corrosion Protection,” IOP Conference Series: Materials Science and Engineering, 493. évf. 2019. Online: https://doi.org/10.1088/1757-899X/493/1/012020
L. Vertuccio, et al., „Effective De-Icing Skin Using Graphene-Based Flexible Heater,” Composites Part B: Engineering, 162. évf. pp. 600–610. 2019. Online: https://doi.org/10.1016/j.compositesb.2019.01.045
B. Vaidya, „Juno: World’s First Graphene Skinned Plane,” Inceptive Mind, 2018. augusztus 15. Online: https://www.inceptivemind.com/juno-worlds-first-graphene-skinned-plane/2710/
M. Usama, „A Graphene Skinned UAV,” Droneblow, 2018. augusztus 16. Online: https://dronebelow.com/2018/08/16/a-graphene-skinned-uav/
S. Georgilidakis, „ACCIDENT: Lightning Strikes Cause 787 Skin Damage,” Mentour Pilot, 2022. május 17. Online: https://mentourpilot.com/accident-lightning-strikes-cause-787-skin-damage/
J. Whitney, „German Aerospace Center Developed De-Icing Technology Using Carbon Fiber,” Military-Aerospace Electronics, 2019. február 1. Online: https://www.militaryaerospace.com/commercial-aerospace/article/14229984/german-aerospace-center-developed-de-icing-technology-using-carbon-fiber