Spatial Intelligence in Higher Education

doi: 10.32560/rk.2023.2.13

Abstract

According to studies spatial intelligence and understanding of spatial relationships are crucial in learning Science, Technology, Engineering and Mathematics (STEM) and in problem solving. This ability is needed in many fields of higher education. The basic condition of engineering work is orientation in space. This report investigated the spatial intelligence of engineering students at the University of Debrecen, and the measurement and development of components of spatial intelligence.

Keywords:

engineering education gender differences problem solving STEM spatial ability spatial intelligence

How to Cite

[1]
R. Nagyné Kondor, “Spatial Intelligence in Higher Education”, RepTudKoz, vol. 35, no. 2, pp. 117–123, Jun. 2024.

References

„CEEB Special Aptitude Test in Spatial Relations,” Developed by the College Entrance Examination Board, USA, 1939.

Global Flow of Tertiary-Level Students. Online: https://uis.unesco.org/en/uis-student-flow

H. K. Ault, S. John, „Assessing and Enhancing Visualization Skills of Engineering Students in Africa: A Comprehensive Study,” Engineering Design Graphics Journal, 74. évf. 2 sz. pp. 12–20. 2010. Online: http://www.edgj.org/index.php/EDGJ/article/view/197

H. Gardner, „Frames of mind: the theory of multiple intelligences,” New York, Amerikai Egyesült Államok: Basic Books, 1983.

J. Buckley, N. Seery, D. Canty, „A Heuristic Framework of Spatial Ability: a Review and Synthesis of Spatial Factor Literature to Support its Translation into STEM Education,” Educational Psychology Review, 30. évf. 3 sz. pp. 947–972. 2018. Online: https://doi.org/10.1007/s10648-018-9432-z

Katona J., „Entwicklung des räumlichen Vorstellungsvermögens an technischen Universitäten,” in Theoretische und empirische Analysen zum geometrischen Denken: Mathematiklernen und-lehren in Ungarn 3, Vásárhelyi Éva, Johann Sjuts szerk. Münster, Németország: WTM-Verlag, 2021, pp. 153–160. Online: https://doi.org/10.37626/GA9783959872003.0.09

Makádi M., „A téri képességek fejlesztése: Segédanyag a gyakorló iskolákban, a külső képzési helyeken a földrajztanárképzésben részt vevők számára,” Budapest, Magyarország: ELTE TTK, 2015.

M. A. Vorstenbosch et al., „Learning anatomy enhances spatial ability,” Anatomical Sciences Education, 6. évf. 4. sz. pp. 257–262. 2013. Online: https://doi.org/10.1002/ase.1346

Nagy-Kondor R., „Gender Differences in Spatial Visualization Skills of Engineering Students,” Annales Mathematicae et Informaticae, 46. évf. pp. 265–276. 2016. Elérhető: http://publikacio.uni-eszterhazy.hu/3267/1/AMI_46_from265to276.pdf

Nagy-Kondor R., „Spatial ability: Measurement and development,” in Visual-Spatial Ability in STEM Education: Transforming Research into Practice, Myint Swe Khine szerk. Springer, 2017. Online: https://doi.org/10.1007/978-3-319-44385-0_3

Nagy-Kondor R., S. Esmailnia, „Polyhedrons vs. Curved Surfaces with Mental Cutting: Impact of Spatial Ability,” Acta Polytechnica Hungarica, 18. évf. 6. sz. pp. 71–83. 2021. Online: https://doi.org/10.12700/APH.18.6.2021.6.4

Séra L., Kárpáti A., Gulyás J., „A térszemlélet. A vizuális-téri képességek pszichológiája, fejlesztése és mérése,” Pécs, Magyarország: Comenius, 2002.

S. G. Vandenberg, A. R. Kuse, „Mental Rotations, a group test of three dimensional spatial visualization,” Perceptual and Motor Skills, 47. évf. pp. 599–604. 1978. Online: https://doi.org/10.2466/pms.1978.47.2.599

T. Branoff, „The Effects of Adding Coordinate Axes to a Mental Rotations Task in Measuring Spatial Visualization Ability: An Information-Processing Approach Relating to Teaching Methods of Undergraduate Technical Graphics Education,” Doctoral Dissertation, Norht Carolina State University, 1998.

T. Branoff, P. Connolly, „The Addition of Coordinate Axes to the Purdue Spatial Visualization Test – Visualization of Rotations: A Study at Two Universities,” Proceedings of the American Society for Engineering Education Annual Conference, 1999.

Downloads

Download data is not yet available.