Cybersecurity in Urban Mobility, Focus on E-Scooters, Part 2
Copyright (c) 2025 Harangozó Valentin

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
The purpose of the research was to thoroughly examine the vulnerabilities of electromobility devices, identify potential risks and threats, and assess the effectiveness of security measures implemented by manufacturers. The author presents his direct experiences with the vulnerabilities of an electric scooter based on the security testing he conducted. The results of the research highlight that to adequately protect electromobility devices, it is essential to investigate the connection between cybersecurity risks and electromobility vehicles. Furthermore, the findings of the research are crucial for future-proof mobility.
Keywords:
How to Cite
References
ARGYROPOULOS, Nikolaos et al. (2021): Addressing Cybersecurity in the Next Generation Mobility Ecosystem with CARAMEL. Transportation Research Procedia, 52, 307–314. Online: https://doi.org/10.1016/j.trpro.2021.01.036
GARCIA, Flavio D. et al. (2016): Lock It and Still Lose It – on the (In)Security of Automotive Remote Keyless Entry Systems. In HOLZ, Thorsten – SAVAGE, Stefan (szerk.): SEC’16: Proceedings of the 25th USENIX Conference on Security Symposium. Berkeley: USENIX Association, 929–944. Online: https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garcia
Instructables (2024): Firmware Downgrade M365. Online: https://www.instructables.com/Firmware-Downgrade-M365/
KATONA Gergő (2022): Autonóm járművek kiberbiztonsági kihívásai (2. rész). Ludovika.hu, 2022. január 20. Online: https://www.ludovika.hu/blogok/cyberblog/2022/01/20/autonom-jarmuvek-kiberbiztonsagi-kihivasai-2-resz/
KATONA Gergő (2023): Az autonóm közúti gépjárművek kiberbiztonsági aspektusa és társadalmi megítélése 1. rész. Hadmérnök, 18(3), 161–176. Online: https://doi.org/10.32567/hm.2023.3.11
KIM, Kyounggon et al. (2021): Cybersecurity for Autonomous Vehicles: Review of Attacks and Defense. Computers & Security, 103, 102150. Online: https://doi.org/10.1016/j.cose.2020.102150
PALKOVICS László (2020): Kiberbiztonság a járműiparban. Scientia et Securitas, 1(1), 2–6. Online: https://doi.org/10.1556/112.2020.00001
PETHŐ Zsombor – SZALAY Zsolt – TÖRÖK Árpád (2022): Safety Risk Focused Analysis of V2V Communication Especially Considering Cyberattack Sensitive Network Performance and Vehicle Dynamics Factors. Vehicular Communications, 37, 100514. Online: https://doi.org/10.1016/j.vehcom.2022.100514
SANGUESA, Julio A. et al. (2021): A Review on Electric Vehicles: Technologies and Challenges. Smart Cities, 4(1), 372–404. Online: https://doi.org/10.3390/smartcities4010022
SANTRA, Atanu (2019): Augmentation of GNSS Utility by IRNSS/NavIC Constellation Over the Indian Region. Advances in Space Research, 63(9), 2995–3008. Online: https://doi.org/10.1016/j.asr.2018.04.020
TÓTH, András (2017): Information Security for Electric Cars in Accordance with Nist Critical Infrastructure Cybersecurity Framework. Hadmérnök, 12(4), 195–206. Online: http://hadmernok.hu/174_19_toth.pdf
VAIDYA, Binod – MOUFTAH, Hussein T. (2020): Cyber Security Considerations for Automated Electro-Mobility Services in Smart Cities. In MOUFTAH, Hussein T. – EROL-KANTARCI, Melike – SOROUR, Sameh (szerk.): Connected and Autonomous Vehicles in Smart Cities. Boca Raton: CRC Press, 457–473 Online: https://doi.org/10.1201/9780429329401-17
VINAYAGA-SURESHKANTH, Nisha et al. (2020): Security and Privacy Challenges in Upcoming Intelligent Urban Micromobility Transportation Systems. In Proceedings of the Second ACM Workshop on Automotive and Aerial Vehicle Security. New York: Association for Computing Machinery, 31–35. Online: https://doi.org/10.1145/3375706.3380559
WOLF, Marko – WEIMERSKIRCH, André – PAAR, Christof (2004): Security in Automotive Bus Systems. Workshop on Embedded IT-Security in Cars (escar), 1–13. Online: https://www.weimerskirch.org/files/WolfEtAl_SecureBus.pdf