Implementation of Wildfire Risk Evaluation Elements into the Hungarian Forest Fire Prevention System
Copyright (c) 2023 Bodnár László, Debreceni Péter
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Nowadays, wildfires are an increasing challenge for the defence sector. The fire risk of a given area depends only in part on human factors and the number of registered fires.
A fire occurs when the moisture content of dead biomass drops to a level, where the fire can already spread between the individual pieces of fuel. Daily fire danger forecast examines the constant and changing components of the fire environment. This determines the flammability of the biomass; the rate of fire spread makes firefighting more
difficult. The fire danger forecast identifies the fire hazard periods when fires can occur. Fire Risk Assessment Systems have been developed in many countries around the world.
In addition to the daily fire risk, these include parameters describing the vulnerability of the areas affected by the fire. National risk assessments are available in many countries around the world using several methodologies. The Joint Research Centre of the European Commission has developed a community-wide approach to forest fire risk assessment, using scientific results and studying good practices. In this approach, the risk of a forest fire is made up of the effects of daily fire hazards and vulnerabilities. The risk of fire due to weather conditions is associated with ignition and the spread of fire. The authors examine in the paper the basic criteria to assess wildfire risk at the pan-European level. The authors analyse external and internal risk factors in an observation plot and examine how international recommendations can be utilised in Hungary.
Keywords:
How to Cite
References
Aragoneses, Elena – Chuvieco, Emilio (2021): Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire, 4(3). Online: https://doi.org/10.3390/fire4030059
Bányai, Tamás – Pántya, Péter (2020): Településeken kívül eső lakott ingatlanok tűzoltói beavatkozásainak sajátosságai egy konkrét eset elemzésével [Particularities of Firefighter Intervention at Residential Buildings Outside of Settlements: A Case Study]. Hadmérnök, 15(2), 79–91. Online: https://doi.org/10.32567/hm.2020.2.6
Bodnár, László (2017): Case Study of “Hortobágy” and “Kunfehértó” Fires, Hungary: Disaster in Costs of their Elimination’s View. Ecoterra: Journal of Environmental Research and Protection, 14(1), 40–46.
Bodnár, László (2020): Lakott területet érintő erdőtüzek vizsgálata, és a védekezés egyes lehetőségei [Examination of Forest Fires at Inhabited Areas and Certain Possibilities of Protection]. Hadmérnök, 15(1), 45–61. Online: https://doi.org/10.32567/hm.2020.1.4
Camia, Andrea – Durrant, Tracy – San-Miguel-Ayanz, Jesus (2014): The European Fire Database. Technical Specifications and Data Submission. JRC Science and Policy Reports, European Commission. Online: https://doi.org/10.2788/2175
Chuvieco, Emilio – Aguado, Inmaculada – Jurdao, Sara – Pettinari, M. Lucrecia – Yebra, Marta – Salas, Javier – Hantson, Stijn – de la Riva, Juan – Ibarra, Paloma – Rodrigues, Marcos et al. (2012): Integrating Geospatial Information into Fire Risk Assessment. International Journal of Wildland Fire, 23(5), 606–619. Online: https://doi.org/10.1071/WF12052
Debreceni, Péter (2021): Magyarországi vegetációtüzek keletkezési okainak vizsgálata és osztályozása [Study and Classification of the Causes of Wildfires in Hungary]. Műszaki Katonai Közlöny, 31(4), 111–128. Online: https://doi.org/10.32562/mkk.2021.4.8
De Rigo, Daniele – Libertà, Giorgio – Houston Durrant, Tracy – Artés Vivancos, Tomas – San-Miguel-Ayanz, Jesús (2017): Forest Fire Danger Extremes in Europe under Climate Change: Variability and Uncertainty. Luxembourg: Publications Office of the European Union. Online: https://doi.org/10.2760/13180
Érces, Gergő – Ambrusz, József (2022): Természeti csapásoknak ellenálló épületek. Polgári Védelmi Szemle, DAREnet projekt Különszám, 116–131.
European Commission (2021): Land-based wildfire prevention. Principles and experiences on managing landscapes, forests and woodlands for safety and resilience in Europe. Luxemburg: Publications Office of the European Union. Online: https://doi.org/10.2779/695867
European Commission (s. a.): Copernicus. Emergency Management Service. EFFIS. Online: https://effis.jrc.ec.europa.eu/apps/effis_current_situation/
Finney, Mark (2005): The Challenge of Quantitative Risk Analysis for Wildland Fire. Forest Ecology and Management, 211(1–2), 97–108. Online: https://doi.org/10.1016/j.foreco.2005.02.010
Ganteaume, Anne – Camia, Andrea – Jappiot, Marielle – San-Miguel-Ayanz, Jesús – Long-Fournel, Marlène – Lampin, Corinne (2013): A Review of the Main Driving Factors of Forest Fire Ignition over Europe. Environmental Management, 51(3), 651–662. Online: https://doi.org/10.1007/s00267-012-9961-z
Hardy, Colin (2005): Wildland Fire Hazard and Risk: Problems, Definitions, and Context. Forest Ecology and Management, 211(1–2), 73–82. Online: https://doi.org/10.1016/j.foreco.2005.01.029
Kaim, Dominik – Radeloff, Volker – Szwagrzyk, Marcin – Dobosz, Monika – Ostafin, Krzysztof (2018): Long-Term Changes of the Wildland–Urban Interface in the Polish Carpathians. ISPRS International Journal of Geo-Information, 7(4). Online: https://doi.org/10.3390/ijgi7040137
Lee, Byran (2003): Fire Danger, Fire Risk, Fire Threat – Mapping Methods. EARSeL. Ghent: International Workshop on Remote Sensing and GIS Applications to Forest Fire Management.
MPI Feuerökologie und Biomassverbrennung AG (1994): Feuer in Umwelt. Freiburg: Max Planck Institut.
Nagy, Dániel (2013): Erdőtűz megelőzési intézkedések erdővédelmi, tűzterjedési és ökonómiai paramétereinek kidolgozása [Development of Parameters for Forest Protection, Fire Spread and Economics of Forest Fire Prevention Measures]. Sopron: West Hungarian University.
Pastor, Elsa – Muñoz, Juan – Caballero, David – Àgueda, Alba – Dalmau, Ferran – Planas, Eulália (2020): Wildland–Urban Interface Fires in Spain: Summary of the Policy Framework and Recommendations for Improvement. Fire Technology, 56, 1831–1851. Online: https://doi.org/10.1007/s10694-019-00883-z
Radeloff, Volker – Hammer, Raphael – Stewart, Susanne (2005): The Wildland-Urban Interface in the United States. Ecological Application, 15(3), 799–805. Online: https://doi.org/10.1890/04-1413
Restás, Ágoston (2020): Az amazóniai, afrikai és ausztrál erdőtüzek tanulságai [Lessons of the Amazonian, African and Australian Wildfires]. Védelem Katasztrófavédelmi Szemle, 27(4), 23–26.
Rothermel, Richard (1972): A Mathematical Model for Predicting Fire Spread in Wildland Fuels. Ogden: Intermountain Forest and Range Experiment Station, U.S. Department of Agriculture.
Ronchi, Enrico – Wong, Stephen – Suzuki, Sayaka – Theodori, Maria – Wadhwani, Rahul – Vaiciulyte, Sandra – Gwynne, Steve – Rein, Guillermo et al. (2021): Case Studies of Large Outdoor Fires Involving Evacuations. Emergency Management & Evacuation (EME) Subgroup, Large Outdoor Fires & the Built Environment (LOF&BE) Working Group of the International Association for Fire Safety Science. Online: https://doi.org/10.5281/zenodo.4504853
San Miguel, Jesus – Chuvieco, Emilio – Handmer, John – Moffat, Andy – Montiel-Molina, Cristina – Sandahl, Leif – Viegas, Domingos (2017): Climatological Risk: Wildfires. In Poljanšek, Karmen – Marín Ferrer, Montserrat – De Groeve, Tom – Clark, Ian (eds.): Science for Disaster Risk Management 2017: Knowing Better and Losing Less. Luxembourg: Publications Office of the European Union, 294–305. Online: https://doi.org/10.2788/842809
San-Miguel-Ayanz, Jesús – Costa, Hugo – de Rigo, Daniele – Libertà, Giorgio – Artés Vivancos, Tomas – Durrant, Tracy – Nuijten, Daniel – Löffler, Peter et al. (2019): Basic Criteria to Assess Wildfire Risk at the Pan-European Level. Luxembourg: Publications Office of the European Union. Online: https://doi.org/10.2760/052345
Teknős, László: Current Issues in Disaster Management Aspects of Global Climate Change. In Földi, László – Hegedűs, Hajnalka (eds.): Effects of Global Climate Change and Improvement of Adaptation Especially in the Public Service Area. Budapest: Dialóg Campus, 145–162. United Nations (2009): UNISDR Terminology on Disaster Risk Reduction. Geneva: United Nations International Strategy for Disaster Reduction. Online: https://purl.org/INRMM-MiD/c-13239301
Van Wagner, C. E. (1987): Development and Structure of the Canadian Forest Fire Weather Index System. Ottawa: Canadian Forestry Service.
Vhiriri, Eunice – Irwin, Yoland – Laubscher, Richard K. – Tandlich, Roman (2021): Short Communication: Quantitative Analysis on Gender Related Vulnerabilities and Fatalities in Disaster Situations in South Africa. Védelem Tudomány, 6(3), 565–592.
Viegas, D. Xavier – Bovio, Giovanni – Ferreira, Almerindo – Nosenzo, Antonio – Sol, Bernard (1999): Comparative Study of Various Methods of Fire Danger Evaluation in Southern Europe. International Journal of Wildland Fire, 9(4), 235–246. Online: https://doi.org/10.1071/WF00015
Wigtil, Gabriel – Hammer, Roger – Kline, Jeffrey – Mockrin, Miranda – Stewart, Susan – Roper, Daniel – Radeloff, Volker (2016): Places Where Wildfire Potential and Social Vulnerability Coincide in the Coterminous United States. International Journal of Wildland Fire, 25(8), 896–908. Online: https://doi.org/10.1071/WF15109
Xi, Dexen – Taylor, Stephen – Woolford, Douglas – Dean, C. B. (2019): Statistical Models of Key Components of Wildfire Risk. Annual Review of Statistics and Its Application, 6, 197–222. Online: https://doi.org/10.1146/annurev-statistics-031017-100450
Yebra, Marta – Dennison, Philip – Chuvieco, Emilio – Riaño, David – Zylstra, Philip – Hunt, Raymond – Danson, Mark – Qi, Yi – Jurdao, Sara (2013): A Global Review of Remote Sensing of Live Fuel Moisture Content for Fire Danger Assessment: Moving towards Operational Products. Remote Sensing of Environment, 136, 455–468. Online: https://doi.org/10.1016/j.rse.2013.05.029