5G-alapú passzív rádiólokáció városi környezetben
Az 5G egyes alkalmazási lehetőségei a hon- és rendvédelem területén
Copyright (c) 2025 Ollári Viktor, Haig Zsolt

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Absztrakt
A passzív rádiólokációs megoldások költséghatékonysága, egyre csökkenő méretei, gyors telepíthetősége, a lehetséges megvilágító források sokrétűsége, alacsony felderíthetősége okán úgy katonai, mint civil alkalmazhatósága igen sokrétű lehet. Passzív rádiólokáció során arra alkalmas külső megvilágító forrás által kibocsátott és a céltárgyról reflektálódó jeleket detektálja a rendszer. Lehetséges potenciálját tekintve az 5G figyelemre méltó megvilágítóként azonosítható. A passzív rádiólokáció szempontjából a városi térnek kaotikus fizikai és elektromágneses jellemzői vannak, így olyan detektálást támogató technológiák alkalmazása válhat szükségessé, mint a dolgok internete és a mesterséges intelligencia. Jelen tanulmány a releváns szakirodalom feldolgozásával, az 5G-ben mint városi passzív rádiólokációs ökoszisztéma megvilágítóforrásában rejlő lehetőséget vizsgálja.
Kulcsszavak:
Hogyan kell idézni
Hivatkozások
GPP.org: The 5G standard, Release 18 (2022). Online: https://www.3gpp.org/ftp/Inbox/Marcoms/3GPP_Poster%20v2.pdf
ABRATKIEWICZ, Karol – KSIĘŻYK, Adam – PŁOTKA, Marek – SAMCZYŃSKI, Piotr – WSZOŁEK, Jacek – ZIELIŃSKI, Tomasz Piotr (2023): SSB-Based Signal Processing for Passive Radar Using a 5G Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 3469–3484. Online: https://doi.org/10.1109/JSTARS.2023.3262291
ADIB, Fadel – SU, Chen-Yu – MAO, Hongzi – KATABI, Dina – DURAND, Frédo (2015): Capturing the Human Figure Through a Wall. ACM Transactions on Graphics, 34(6). Online: https://doi.org/10.1145/2816795.2818072
ASHLEIBTA, Aboajeila Milad – TAHA, Ahmad – KHAN, Muhammad A. – TAYLOR, William – TAHIR, Ahsen – ZOHA, Ahmed – ABBASI, Qammer H. – IMRAN, Muhammad A. (2021): 5G-Enabled Contactless Multi-User Presence and Activity Detection for Independent Assisted Living. Scientific Reports, 11. Online: https://doi.org/10.1038/s41598-021-96689-7
BALAJTI István (2019a): Új kihívások a hazai légtérellenőrzésben, Rendszerintegrálási alapok, passzív rádiólokáció. Haditechnika, 53(2), 2–7. Online: https://doi.org/10.23713/HT.53.2.01
BALAJTI István (2019b): A XXI. századi radarrendszerekkel szemben támasztható elvárások. Haditechnika, 53(3), 3–7. Online: https://doi.org/10.23713/HT.53.3.01
BEASLEY, Piers – RITCHIE, Matthew – GRIFFITHS, Hugh – MICELI, William – INGGS, Michael – SIMON, Lewis (2020): Multistatic Radar Measurements of UAVs at X-band and L-band. 2020 IEEE Radar Conference, Florence, Italy, 2020, 1–6. Online: https://doi.org/10.1109/RadarConf2043947.2020.9266444
BINGLI, Liao – VARGAS, Vasconcellos (2024): Extending Token Computation for LLM Reasoning. arXiv:2403.14932v3 [cs.CL]. Online: https://doi.org/10.48550/arXiv.2403.14932
BIRUTIS, Agnius – MYKKELTVEIT, Anders – ULVERSØY, Tore – BORLAUG, Øystein Dag – KÅRSTAD, Jørn (2022): A Study of 5G New Radio and Its Vulnerability to Jamming. Norvegian Defence Research Establishment. Online: https://www.ffi.no/en/publications-archive/a-study-of-5g-new-radio-and-its-vulnerability-to-jamming
CARO, C. G. – BLOICE, J. A. (1971): Contactless Apnoea Detector Based on Radar. The Lancet 298(7731), 959–961. Online: https://doi.org/10.1016/S0140-6736(71)90274-1
CHANG, Yupeng – WANG, Xu – WANG, Jindong – WU, Yuan – YANG, Linyi – ZHU, Kaijie – CHEN, Hao – YI, Xioyuan – WANG, Cunxiang – WANG, Yidong et al. (2024): A Survey on Evaluation of Large Language Models. ACM Transactions on Intelligent Systems and Technology, 15(3). Online: https://doi.org/10.1145/3641289
CHEN, Victor C. – LI, Fayin – HO, Shen-Shyang – WECHSLER, Harry (2006): Micro-Doppler Effect in Radar: Phenomenon, Model, and Simulation Study. IEEE Transactions on Aerospace and Electronic Systems, 42(1), 2–21. Online: https://doi.org/10.1109/TAES.2006.1603402
COLONE, Fabiola – FILIPPINI, Francesca – PASTINA, Debora (2023): Passive Radar: Past, Present, and Future Challenges. IEEE Aerospace and Electronic Systems Magazine, 38(1), 54–69. Online: https://doi.org/10.1109/MAES.2022.3221685
DEEP, Yoshana – HELD, Patrick – RAM, Shobha Sundar – STEINHAUSER, Dagmar – GUPTA, Anshu – GRUSON, Frank – KOCH, Andreas – ROY, Anirban (2020): Radar Cross-Sections of Pedestrians at Automotive Radar Frequencies Using Ray Tracing and Point Scatterer Modelling. IET Radar, Sonar & Navigation, 14(6), 833–844. Online: https://doi.org/10.1049/iet-rsn.2019.0471
DREIFUERST, Ryan M. – HEATH, Robert W. (2023): Massive MIMO in 5G: How Beamforming, Codebooks, and Feedback Enable Larger Arrays. IEEE Communications Magazine, 61(12), 18–23. Online: https://doi.org/10.1109/MCOM.001.2300064
EZUMA, Martins – ANJINAPPA, Chethan Kumar – SEMKIN, Vasilii – GUVENC, Ismail (2021): Comparative Analysis of Radar Cross Section Based UAV Classification Techniques. arXiv:2112.09774v1 [eess.SP]. Online: https://doi.org/10.48550/arXiv.2112.09774
FARKAS Tibor (2023): A kommunikációs és információs rendszerek értelmezése napjainkban: Követelmények és kihívások. In TÓTH András (szerk.): Új típusú kihívások az infokommunikációban. Budapest: Ludovika Egyetemi Kiadó, 11–30.
FEREIDOUNI, Farshad – MOHAMMADI, Seyed T. – SHAHRAKI, Vahed F. – JAHANTIGH, Farhad (2022): Human Health Risk Assessment of 4-12 GHz Radar Waves using CST STUDIO SUITE Software. Journal of Biomedical Physics Engineering, 12(3), 285–296. Online: https://doi.org/10.31661/jbpe.v0i0.1272
FERENCZY Gábor – SZŰCS Péter – BALOG Károly (1998): Rádiólokáció alapjai. Budapest: Bolyai János Katonai Műszaki Főiskola.
GARTENBERG, Chaim (2024): What is a Long Context Window? Blog.google, 2024. február 16. Online: https://blog.google/technology/ai/long-context-window-ai-models
GOMEZ-DEL-HOYO, Pedro – GRONOWSKI, Konrad – SAMCZYNSKI, Piotr (2022): The STARLINK-Based Passive Radar: Preliminary Study and First Illuminator Signal Measurements. 23rd International Radar Symposium (IRS), Gdansk, Poland, 2022, 350–355. Online: https://doi.org/10.23919/IRS54158.2022.9905046
GURBUZ, Sevgi Z. – GRIFFITHS, Hugh D. – CHARLISH, Alexander – RANGASWAMY, Muralidhar – GRECO, Maria Sabrina – BELL, Kristine (2019): An Overview of Cognitive Radar: Past, Present, and Future. IEEE Aerospace and Electronic Systems Magazine, 34(12), 6–18. Online: https://doi.org/10.1109/MAES.2019.2953762
HAIG Zsolt – KOVÁCS László – VÁNYA László – VASS Sándor – NÉMETH András (2014): Elektronikai hadviselés. Budapest: Nemzeti Közszolgálati Egyetem Hadtudományi és Honvédtisztképző Kar.
HUAN, Sha – WU, Limei – ZHANG, Man – WANG, Zhaoyue – YANG, Chao (2023): Radar Human Activity Recognition with an Attention-Based Deep Learning Network. Sensors, 23(6). Online: https://doi.org/10.3390/s23063185
JIAN, Michael – LU, Zhenzhong – CHEN, Victor C. (2017): Experimental Study on Radar Micro-Doppler Signatures of Unmanned Aerial Vehicles. IEEE Radar Conference, Seattle, USA, 2017, 0854–0857. Online: https://doi.org/10.1109/RADAR.2017.7944322
KARLSSON, Alexander (2023): Radar Signal Processing using Artificial Neural Networks. PhD-disszertáció. KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering. Online: https://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1797382
KARSA Róbert (2024): Tűzvédelmi szakértői rendszer létrehozása nagy nyelvi modellek segítségével. Rendvédelem, 13(2), 26–36. Online: https://doi.org/10.53793/RV.2024.2.3
KHEDKAR, Ashok – MUSALE, Sandeep – PADALKAR, Ganesh – SURYAWANSHI, Ravikant –SAHARE, Shashikant (2023): An Overview of 5G and 6G Networks from the Perspective of AI Applications. Journal of the Institution of Engineers (India): Series B, 104(6), 1329–1341. Online: https://doi.org/10.1007/s40031-023-00928-6
KIM, Youngwook – HA, Sungjae – KWON, Jihoon (2015): Human Detection Using Doppler Radar Based on Physical Characteristics of Targets. Geoscience and Remote Sensing Letters, 12(2), 289–293. Online: https://doi.org/10.1109/LGRS.2014.2336231
KIM, Hahyun – KIM, Gayeong – SHIM, Sunghoon – JANG, Sukbin – SONG, Jiho – LEE, Byungju (2024): Key Technologies for 6G-Enabled Smart Sustainable City. Electronics, 13(2). Online: https://doi.org/10.3390/electronics13020268
KIRILLOV, Alexander et al. (2023): Segment Anything. arXiv:2304.02643 [cs.CV]. Online: https://doi.org/10.48550/arXiv.2304.02643
KONCZ Miklós Tamás (2007): Lunenberg reflektor radarkeresztmetszetének mérése összehasonlító módszerrel. Hadmérnök, 2(3), 100–185. Online: http://hadmernok.hu/archivum/2007/3/2007_3_koncz.pdf
KSIĘŻYK, Adam – PŁOTKA, Marek – ABRATKIEWICZ, Karol – MAKSYMIUK, Radosław – WSZOŁEK, Jacek – SAMCZYŃSKI, Piotr (2023): Opportunities and Limitations in Radar Sensing Based on 5G Broadband Cellular Networks, IEEE Aerospace and Electronic Systems Magazine, 38(9), 4–21. Online: https://doi.org/10.1109/MAES.2023.3267061
KUSCHEL, Heiner – CRISTALLINI, Diego – OLSEN, Karl Erik (2019): Tutorial: Passive Radar Tutorial. IEEE Aerospace and Electronic Systems Magazine, 34(2), 2–19. Online: https://doi.org/10.1109/MAES.2018.160146
LI, Wenda – PIECHOCKI, Robert J. – WOODBRIDGE, Karl – TANG, Chong – CHETTY, Kevin (2021): Passive WiFi Radar for Human Sensing Using a Stand-Alone Access Point. IEEE Transactions on Geoscience and Remote Sensing, 59(3), 1986–1998. Online: https://doi.org/10.1109/TGRS.2020.3006387
LI, Xiang – WEN, Congcong – HU, Yuan – YUAN, Zhenghang – ZHU, Xiao Xiang (2024): Vision-Language Models in Remote Sensing: Current Progress and Future Trends. IEEE Geoscience and Remote Sensing Magazine, 12(2), 32–66. Online: https://doi.org/10.1109/MGRS.2024.3383473
LIN, Luning – YU, Ningning – WANG, Yong – SHI, Zhiguo (2023): 5G Spectrum Learning-Based Passive UAV Detection in Urban Scenario. IEEE/CIC International Conference on Communications in China (ICCC), Dalian, China, 2023, 1–5. Online: https://doi.org/10.1109/ICCC57788.2023.10233342
LIN, Xingqin – LI, Jingya – BALDEMAIR, Robert – CHENG, Jung-Fu Thomas – PARKVALL, Stefan – LARSSON, Daniel Chen (2019): 5G New Radio: Unveiling the Essentials of the Next Generation Wireless Access Technology. IEEE Communications Standards Magazine, 3(3), 30–37. Online: https://doi.org/10.1109/MCOMSTD.001.1800036
LIU, Hongshan – QIN, Tong – GAO, Zhen – MAO, Tianqi – YING, Keke – WAN, Ziwei – QIAO, Li – NA, Rui – LI, Zhongxiang – HU, Chun – MEI, Yikun – LI, Tuan – WEN, Guanghui – CHEN, Lei – WU, Zhonghuai – LIU, Ruiqi – CHEN, Gaojie – WANG, Shuo – ZHENG, Dezhi (2024): Near-Space Communications: the Last Piece of 6G Space-Air-Ground-Sea Integrated Network Puzzle. arXiv:2401.00283 [cs.IT]. Online: https://doi.org/10.34133/space.0176
LIU, Yan – DAN, Yangpeng – WAN, Xianrong – YI, Jianxin (2022): Investigations on 5G-Based Passive Sensing for IoT Applications. IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, China, 2022, 823–828. Online: https://doi.org/10.1109/ICCC56324.2022.10065876
LYU, Xiaoyong – LIU, Baojin – FAN, Wenbing (2022): Signal Processing in Passive Radar with Multi-User MIMO-OFDM Signal. EURASIP Journal on Advances in Signal Processing, 113. Online: https://doi.org/10.1186/s13634-022-00947-3
MAKSYMIUK, Radosław – HOYO, Pedro Gomez del – ABRATKIEWICZ, Karol – SAMCZYNSKI, Piotr – KULPA, Krzysztof (2024): 5G-Based Passive Radar on a Moving Platform – Detection and Imaging. IET Radar, Sonar & Navigation, 18(12), 2414–2426. Online: https://doi.org/10.1049/rsn2.12559
MAKSYMIUK, Radosław – PŁOTKA, Marek – ABRATKIEWICZ, Karol – SAMCZYŃSKI, Piotr (2023): 5G Network-Based Passive Radar for Drone Detection. 24th International Radar Symposium (IRS), Berlin, Germany, 1–10. Online: https://doi.org/10.23919/IRS57608.2023.10172437
NATO STO (2017): Passive Coherent Locator History and Fundamentals. 2017. augusztus 23. Online: https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-SET-243/EN-SET-243-01.pdf
NÚÑEZ-ORTUÑO, José M. – GONZÁLEZ-COMA, José – LÓPEZ, Rubén Nocelo – TRONCOSO-PASTORIZA, Francisco – ÁLVAREZ-HERNÁNDEZ, María (2023): Beamforming Techniques for Passive Radar: An Overview. Sensors (Basel), 23(7). Online: https://doi.org/10.3390/s23073435
OpenAI et al. (2024): GPT-4 Technical Report. arXiv:2303.08774v6 [cs.CL]. Online: https://doi.org/10.48550/arXiv.2303.08774
PETŐ Tamás (2013): Több csatornás DVB-T alapú passzív radar. BME Villamosmérnöki és Informatikai Kar, (2013.10.25). Online: https://tdk.bme.hu/VIK/HWBeagy/Tobb-csatornas-DVBT-alapu-passziv-radar
SKOLNIK, Merrill I. (1981): Introduction to Radar Systems. Second Edition. Singapore: McGraw-Hill.
SELLER Rudolf – PETŐ Tamás – DUDÁS Levente – KOVÁCS Levente (2019): Passzív radar I rész. Haditechnika, 53(6), 51–55. Online: https://doi.org/10.23713/HT.53.6.10
SELLER Rudolf – PETŐ Tamás – DUDÁS Levente – KOVÁCS Levente (2020): Passzív radar II. rész. Haditechnika, 54(1), 43–47. Online: https://doi.org/10.23713/HT.54.1.09
SEMKIN, Vasilii – HAARLA, Jaakko – PAIRON, Thomas – SLEZAK, Christopher – RANGAN, Sundeep – VIIKARI, Ville (2020): Analyzing Radar Cross Section Signatures of Diverse Drone Models at mmWave Frequencies. IEEE Access, 8, 48958–48969. Online: https://doi.org/10.1109/ACCESS.2020.2979339
STRINATI, Emilio Calvanese – ALEXANDROPOULOS, George C. – AMANI, Navid – CROZZOLI, Maurizio – MADHUSUDAN, Giyyarpuram – MEKKI, Sami – RIVET, Francois – SCIANCALEPORE, Vincenzo – SEHIER, Philippe – STARK, Maximilian – WYMEERSCH, Henk (2024): Towards Distributed and Intelligent Integrated Sensing and Communications for 6G Networks. arXiv:2402.11630 [eess.SP]. Online: https://doi.org/10.1109/MWC.001.2400056
TANG, Chong – LI, Wenda – VISHWAKARMA, Shelly – CHETTY, Kevin – JULIER, Simon – WOODBRIDGE, Karl (2020): Occupancy Detection and People Counting Using WiFi Passive Radar. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020, 1–6. Online: https://doi.org/10.1109/RadarConf2043947.2020.9266493
TARZANAGH, Davoud Ataee – LI, Yingcong – ZHANG, Xuenchen – OYMAK, Samet (2023): Max-Margin Token Selection in Attention Mechanism. arXiv:2306.13596v4 [cs.LG]. Online: https://doi.org/10.48550/arXiv.2306.13596
THI PHUOC VAN, Nguyen – TANG, Liqiong – DEMIR, Veysel – HASAN, Syed F. – MINH, Nguyen D. – MUKHOPADHYAY, Subhas (2019): Review-Microwave Radar Sensing Systems for Search and Rescue Purposes. Sensors, 19(13). Online: https://doi.org/10.3390/s19132879
THOMAS, Nicholas J. – WILLIS, Mike J. – CRAIG, Ken H. (2006): The Relative Importance of Different Propagation Mechanisms for Radio Coverage and Interference Prediction in Urban Scenarios at 2.4, 5.8, and 28 GHz. IEEE Transactions on Antennas and Propagation, 54(12), 3918–3920. Online: https://doi.org/10.1109/TAP.2006.886571
TÓTH András (2023a): Az Internet of Things rendszerek biztonsági kihívásai. In TÓTH András (szerk.): Új típusú kihívások az infokommunikációban. Budapest: Ludovika Egyetemi Kiadó, 99–136.
TÓTH András (2023b): Az 5G-technológia jellemzői és a kialakításában rejlő kihívások. In TÓTH András (szerk.): Új típusú kihívások az infokommunikációban. Budapest: Ludovika Egyetemi Kiadó, 51–98.
VASWANI, Ashish – SHAZEER, Noam – PARMAR, Niki – USZKOREIT, Jakob – JONES, Llion – GOMEZ, Aidan N. – KAISER, Lukasz – ILLIA Polosukhin (2017): Attention Is All You Need. arXiv:1706.03762v7 [cs.CL]. Online: https://doi.org/10.48550/arXiv.1706.03762
WANG, Siqin – XIAO, Huang – LI, Yun – ZHANG, Ce – NING, Huan – ZHU, Rui – LI, Zhenlong – YE, Xinyue (2024): GPT, Large Language Models (LLMs) and Generative Artificial Intelligence (GAI) Models in Geospatial Science: A Systematic Review. International Journal of Digital Earth, 17(1). Online: https://doi.org/10.1080/17538947.2024.2353122
WU, Shengqiong – FEI, Hao – QU, Leigang – CHUA, Tat-Seng (2024): NExT-GPT: Any-to-Any Multimodal LLM. arXiv:2309.05519v3 [cs.AI]. Online: https://doi.org/10.48550/arXiv.2309.05519
WÜHRL, Tibor – BAROSS, Márk Tamás – GYÁNYI, Sándor – VARGA, Péter János (2023): 5G Synchronization Problems with GNSS Interference. IEEE 6th International CANDO-EPE Conference, Budapest, Hungary, 2023, 149–154. Online: https://doi.org/10.1109/CANDO-EPE60507.2023.10417998
XU, Fengtong – HONG, Tao – ZHAO, Jincheng – YANG, Tao (2019): Detection and Identification Technology of Rotor Unmanned Aerial Vehicles in 5G Scene. International Journal of Distributed Sensor Networks, 15(6). Online: https://doi.org/10.1177/1550147719853990
XU, HanXiang – WANG, Shenao – LI, Ningke – WANG, Kailong – ZHAO, Yanjie – CHEN, Kai – YU, Ting – LIU, Yang – WANG, Haoyu (2024): Large Language Models for Cyber Security: A Systematic Literature Review. arXiv:2405.04760v2 [cs.CR]. Online: https://doi.org/10.48550/arXiv.2405.04760
YAMADA, Naoyuki – TANAKA, Y. – NISHIKAWA, Kunitoshi (2005): Radar Cross Section for Pedestrian in 76GHz Band. European Microwave Conference, Paris, France, 2005. Online: https://doi.org/10.1109/EUMC.2005.1610101
ZHANG, Duzhen – YU, Yahan – DONG, Jiahua – LI, Chenxing – SU, Dan – CHU, Chenhui – YU, Dong (2024): MM-LLMs: Recent Advances in MultiModal Large Language Models. arXiv:2401.13601v5 [cs.CL]. Online: https://doi.org/10.18653/v1/2024.findings-acl.738