Dangers of Ignition of Trees Exposed to Radiant Heat and Possibilities of Delaying Combustion
Copyright (c) 2024 Kovács Andrea, Elek Barbara
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
With the ignition point of around 300 °C, wood as a building material is one of the most flammable materials in the case of fire. When fires occur, the spread of flames is always preceded by radiant heat load, which can cause damages of varying degrees to the different wood materials, and pyrolysis can also start as a result. Thus, special attention should be paid to the research of the thermal behaviour of wood in the case of radiant heat and of the possibilities of protection against it. In our work, we examined the behaviour of the wood material of national natural tree species (scots pine, spruce, hornbeam, acacia, beech) that appear in buildings as structural materials and interior design structural materials. In our study, we examined how wood materials treated with commercially available combustion delay materials behave when exposed to radiant heat. The extent of damage was determined by measuring mass loss. In addition, the mechanical and surface damage of the samples was not negligible. Unlike the standard measuring equipment used by the Lindner-method, our device providing radiant heat was a custom made device with a non-standard design.
Keywords:
References
BEDA László – MOHAI Ágota (2012): Papírtekercsek éghetőségének vizsgálata, az eredmények hatása a papírtekercs raktárak tűzvédelmére. Budapest: Avernim.
BODNÁR László – TEKNŐS László (2023): A globális éghajlatváltozás hatásai az erdőtüzekre. Védelem Tudomány: Katasztrófavédelmi online tudományos folyóirat, 8 (különszám), 177–184. Online: https://ojs.mtak.hu/index.php/vedelemtudomany/article/view/13888
CHEIM, Luiz et al. (2012): Furan Analysis for Liquid Power Transformers. IEEE Electrical Insulation Magazine, 28(2), 8–21. Online: https://doi.org/10.1109/MEI.2012.6159177
DI HA LE, Truong (2019): Experimental Assessment of the Fire Resistance Mechanisms of Timber-Steel Composites. Materials, 12(23), 4003. Online: https://doi.org/10.3390/ma12234003
GYŐRI, Melinda et al. (2021): Combustible Parameters of Native Timber Modificated by Blokk Wood Method. Védelem Tudomány: Katasztrófavédelmi online tudományos folyóirat, 6(3), 107–124. Online: https://ojs.mtak.hu/index.php/vedelemtudomany/article/download/13728/11154/
HAJDU, Flóra et al. (2022): Examination of Vegetation Fire Spread with Numerical Modelling and Simulation Using Fire Dynamic Simulator. Academic and Applied Research in Military and Public Management Science, 21(3), 85–100. Online: https://doi.org/10.32565/aarms.2022.3.5
HAJDU, Flóra – KÖRNYEI, László – KUTI, Rajmund (2023): One-At-A-Time Sensitivity Study of a Tree Burning Simulation. Pollack Periodica: An International Journal for Engineering and Information Science, 19(1), 1–7. Online: https://doi.org/10.1556/606.2023.00850
JI, Jingwei et al. (2006): An Integral Model for Wood Auto-Ignition Under Variable Heat Flux. Journal of Fire Sciences, 24(5), 413–425. Online: https://doi.org/10.1177/0734904106062138
KEREKES, Zsuzsanna – LUBLÓY, Éva – KOPECSKÓ, Katalin (2018): Behaviour of Tyres in Fire: Determination of Burning Characteristics of Tyres. Journal of Thermal Analysis and Calorimetry, 133, 279–287. Online: https://doi.org/10.1007/s10973-018-7001-9
LIU, Hao et al. (2023): Experimental and Theoretical Study on Ignition and Combustion Characteristics of Aging Woods by Cone Calorimetry. Journal of Thermal Analysis and Calorimetry, 148, 10573–10582. Online: https://doi.org/10.1007/s10973-023-12311-0
LUBLÓY, Éva et al. (2023): Examination of the Fire Performance of Wood Materials Treated With Different Precautions. Journal of Thermal Analysis and Calorimetry, 148, 4129–4140. Online: https://doi.org/10.1007/s10973-023-12050-2
MENSAH, Rhoda Afriyie et al. (2023): Characterisation of the Fire Behaviour of Wood: From Pyrolysis to Fire Retardant Mechanisms. Journal of Thermal Analysis and Calorimetry, (148), 1407–1422. Online: https://doi.org/10.1007/s10973-022-11442-0
MSZ 9607:2020 (2020): Égéskésleltető szerrel kezelt, fa és fa alapanyagú építési termékek vizsgálata. A kezelés hatékonyságának értékelése Lindner-módszer alapján. Budapest: Magyar Szabványügyi Testület.
PLUZSIK András – SZITNYAINÉ SIKLÓSI Magdolna – VARGYAY Kornélia (1993): A faanyagvédelem módszerei és anyagai. Budapest: Facta.
VOTHI, Hai et al. (2019): Novel Nitrogen-Phosphorus Flame Retardant Based on Phosphonamidate: Thermal Stability and Flame Retardancy. ACS Omega, 4(18), 17791–17797. Online: https://doi.org/10.1021/acsomega.9b02371
WANG, Jiawei et al. (2021a): Effect of Delignification on Thermal Degradation Reactivities of Hemicellulose and Cellulose in Wood Cell Walls. Journal of Wood Science, 67(19), 1–11. Online: https://doi.org/10.1186/s10086-021-01952-0
WANG, Jiawei et al (2021b): Thermal Degradation of Hemicellulose and Cellulose in Ball-Milled Cedar and Beech Wood. Journal of Wood Science, 67(32), 1–14. Online: https://doi.org/10.1186/s10086-021-01962-y
ZHENG, Chao – LI, Dongfang – EK, Monica (2019): Mechanism and Kinetics of Thermal Degradation of Insulating Materials Developed from Cellulose Fiber and Fire Retardants. Journal of Thermal Analysis and Calorimetry, 135, 3015–3027. Online: https://doi.org/10.1007/s10973-018-7564-5
ZHU, F. L. – LI, X. – FENG, Q. Q. (2021): Thermal Decomposed Behavior and Kinetic Study for Untreated and Flame Retardant Treated Regenerated Cellulose Fibers Using Thermogravimetric Analysis. Journal of Thermal Analysis and Calorimetry, 145, 423–435. Online: https://doi.org/10.1007/s10973-020-09780-y