Post-Treatment Technologies and Possible Implementations in Onsite Wastewater Treatment Systems

doi: 10.32562/mkk.2024.3.6

Abstract

Billions of cubic meters of wastewater are generated worldwide every year. Some methods of wastewater management have been in use for millennia. However, the rapid industrial development, the invention of new substances, and their extensive use have introduced pollutants into wastewater that can not be removed by the currently used technologies. In the case of industrial wastewaters, new technologies, primarily based on oxidation and disinfection, are used to remove toxic, often non-biodegradable substances that are harmful to the environment and human health. However, these problematic substances are not limited to industrial settings, such technologies need to be extended to treat domestic wastewater in a simple, safe, and cost-effective manner. Developing these technologies must also be prioritized, given the increasing volume of wastewater recycled and released into the environment, continuously accumulating pollutants in the natural and built environment.

Keywords:

wastewater treatment post-treatment oxidation contaminants of emerging concern onsite wastewater treatment systems

References

CHERNICHARO, C. A. L. (2006): Post-Treatment Options for the Anaerobic Treatment of Domestic Wastewater. Reviews in Environmental Science and Bio/Technology, 5, 73–92. Online: https://doi.org/10.1007/s11157-005-5683-5 ; DOI: https://doi.org/10.1007/s11157-005-5683-5

CHFADI, Tarik – GHEBLAWI, Mohamed – THAHA, Renna (2021): Public Acceptance of Wastewater Reuse: New Evidence from Factor and Regression Analyses. Water, 13(10), 1391. Online: https://doi.org/10.3390/w13101391 ; DOI: https://doi.org/10.3390/w13101391

DUONG, Kimberly – SAPHORES, Jean‐Daniel (2015): Obstacles to Wastewater Reuse: An Overview. WIREs Water, 2(3), 199–214. Online: https://doi.org/10.1002/wat2.1074 ; DOI: https://doi.org/10.1002/wat2.1074

EGBUIKWEM, Precious Nneka – MIERZWA, Jose Carlos – SAROJ, Devendra Prakash (2020): Evaluation of Aerobic Biological Process With Post-ozonation for Treatment of Mixed Industrial and Domestic Wastewater for Potential Reuse in Agriculture. Bioresource Technology, 318, 124200. Online: https://doi.org/10.1016/j.biortech.2020.124200 ; DOI: https://doi.org/10.1016/j.biortech.2020.124200

ENGIDA, T. M. et al. (2020): Review Paper on Treatment of Industrial and Domestic Wastewaters Using Uasb Reactors Integrated into Constructed Wetlands for Sustainable Reuse. Applied Ecology and Environmental Research, 18, 3101–3129. Online: https://doi.org/10.15666/aeer%2F1802_31013129 ; DOI: https://doi.org/10.15666/aeer

Environment and Natural Resources Department (2022): Wastewater as a Resource. European Investment Bank. Online: https://www.eib.org/attachments/publications/wastewater_as_a_resource_en.pdf ; DOI: https://doi.org/10.2867/31206

FRIEDLER, Eran – GILBOA, Yael (2010): Performance of UV Disinfection and the Microbial Quality of Greywater Effluent Along a Reuse System for Toilet Flushing. Science of The Total Environment, 408(9), 2109–2117. Online: https://doi.org/10.1016/j.scitotenv.2010.01.051 ; DOI: https://doi.org/10.1016/j.scitotenv.2010.01.051

GENE, E. Likens (2009): Encyclopedia of Inland Waters. Academic Press. DOI: https://doi.org/10.1016/B978-012370626-3.00001-6

GUPTA, Nandini – KHAN, D.K. – SANTRA, S. C. (2010): Determination of Public Health Hazard Potential of Wastewater Reuse in Crop Production. World Review of Science, Technology and Sustainable Development, 7(4), 328–340. Online: https://doi.org/10.1504/WRSTSD.2010.032741 ; DOI: https://doi.org/10.1504/WRSTSD.2010.032741

GYÖRKI, Gábor – PÁLNÉ SZÉN, Orsolya – KNISZ, Judit (2023): Impact of Maintenance on Domestic Wastewater Treatment Systems. Pollack Periodica, 18, 60–65. Online: https://doi.org/10.1556/606.2023.00778 ; DOI: https://doi.org/10.1556/606.2023.00778

JUHÁSZ Endre (2011): A szennyvíztisztítás története. Budapest: Magyar Víziközmű Szövetség.

KARCHES Tamás (2020): Kis kapacitású szennyvíztisztító létesítmények. Budapest: Ludovika.

KNISZ Judit (2020): Szerves mikroszennyezők a vizekben. Budapest: Ludovika.

KNISZ, Judit et al. (2021): Genome-Level Insights Into the Operation of an On-Site Biological Wastewater Treatment Unit Reveal the Importance of Storage Time. Sci Total Environ, 766, 144425. Online: https://doi.org/10.1016/j.scitotenv.2020.144425 ; DOI: https://doi.org/10.1016/j.scitotenv.2020.144425

LOFRANO, Giusy – BROWN, Jeanette (2010): Wastewater Management through the Ages: A History of Mankind. Science of The Total Environment, 408, 5254–5264. Online: https://doi.org/10.1016/j.scitotenv.2010.07.062 ; DOI: https://doi.org/10.1016/j.scitotenv.2010.07.062

METCH, Jacob et al. (2015): Enhanced Disinfection By-Product Formation Due to Nanoparticles in Wastewater Treatment Plant Effluents. Environmental Science: Water Research & Technology, 1, 823–831. Online: https://doi.org/10.1039/C5EW00114E ; DOI: https://doi.org/10.1039/C5EW00114E

PATWARDHAN, A. D. (2017): Industrial Wastewater Treatment. PHI Learning.

SAFARI, Golam Hossein et al. (2013): Post-Treatment of Secondary Wastewater Treatment Plant Uffluent using a Two-Stage Fluidized Bed Bioreactor System. Journal of Environmental Health Science and Engineering, 11(10). Online: https://doi.org/10.1186/2052-336X-11-10 ; DOI: https://doi.org/10.1186/2052-336X-11-10

SARMA, Bornali (2018): Plasma Technology & its Impact on Next Generation Smart Textile. Current Trends in Fashion Technology & Textile Engineering, 3(5), 555621. Online: https://doi.org/10.19080/CTFTTE.2018.03.555621 ; DOI: https://doi.org/10.19080/CTFTTE.2018.03.555621

SHINDHAL, Toral et al. (2021): A Critical Review on Advances in the Practices and Perspectives for the Treatment of Dye Industry Wastewater. Bioengineered, 12(1), 70–87. Online: https://doi.org/10.1080/21655979.2020.1863034 ; DOI: https://doi.org/10.1080/21655979.2020.1863034

UMAR, Muhammad (2022): From Conventional Disinfection to Antibiotic Resistance Control-Status of the Use of Chlorine and UV Irradiation during Wastewater Treatment. International Journal of Environmental Research and Public Health, 19(3), 1636. Online: https://doi.org/10.3390/ijerph19031636 ; DOI: https://doi.org/10.3390/ijerph19031636

WERT, Eric C. et al. (2007): Formation of Oxidation Byproducts from Ozonation of Wastewater. Water Research, 41(7), 1481–1490. Online: https://doi.org/10.1016/j.watres.2007.01.020 ; DOI: https://doi.org/10.1016/j.watres.2007.01.020

YANG, J. et al. (2021): Ultrafiltration as Tertiary Treatment for Municipal Wastewater Reuse. Separation and Purification Technology, 272, 118921. Online: https://doi.org/10.1016/j.seppur.2021.118921 ; DOI: https://doi.org/10.1016/j.seppur.2021.118921

YE DU, Xiao-Tong et al. (2017): Formation and Control of Disinfection Byproducts and Toxicity During Reclaimed Water Chlorination: A Review. Journal of Environmental Science, 58, 51–63. Online: https://doi.org/10.1016/j.jes.2017.01.013 ; DOI: https://doi.org/10.1016/j.jes.2017.01.013

ZHANG, Yi-Xuan et al. (2023): Ultraviolet-Based Synergistic Processes for Wastewater Disinfection: A Review. Journal of Hazardous Materials, 453, 131393. Online: https://doi.org/10.1016/j.jhazmat.2023.131393 ; DOI: https://doi.org/10.1016/j.jhazmat.2023.131393

Jogi források

/2005. (XII. 6.) KvVM rendelet a használt és szennyvizek kibocsátásának ellenőrzésére vonatkozó részletes szabályokról

/2001. (IV. 3.) Korm. rendelet a szennyvizek és szennyvíziszapok mezőgazdasági felhasználásának és kezelésének szabályairól