Insensitive Explosives Part II.

Test Methods and Application Possibilities

doi: 10.32562/mkk.2024.1.4

Abstract

As technology advances, modern technical devices and the insensitive ammunition that goes with them are becoming more and more common. Since insensitive explosives can safely replace propellants or fillers used in the past, in line with expectations and test results, their use is becoming unquestionable. In our country, too, ammunition types have already appeared (and their production is being planned), for the integration of which it is essential to provide the appropriate tests, test requirements and basic information for the management of the devices. Countries that have artillery, mine launchers, missiles for air defence or air forces must have the necessary capabilities to test their munitions and missiles, with a test station and inspection and testing experts. Since insensitive munitions have already been introduced in the troops of the Hungarian Defence Forces and the production of certain types is in the preparatory phase, I consider it important to draw attention to the requirements, tests and the infrastructure needed to carry them out, which are not yet available. My aim is to provide information on insensitive explosives and insensitive ammunition to those working in the field or interested in the subject in the future.

Keywords:

insensitive explosives insensitive munitions explosive testing

References

BEAUREGARD, L. Raymond [é. n.]: The technical requirements for insensitive munitions. The History of Insensitive Munitions. Online: https://www.insensitivemunitions.org/history/the-technical-requirements-for-insensitive-munitions/

DARUKA Norbert (2016): Robbanóanyag-ipari alapanyagok és termékek osztályozásának lehetőségei. Műszaki Katonai Közlöny, 26(1), 26–44. Online: http://www.hhk.uni-nke.hu/downloads/kiadvanyok/mkk.uni-nke.hu/PDF_2016_1sz/ MKK 2016_1sz_ossz.pdf

DARUKA Norbert (2023): Érzéketlen robbanóanyagok I. – Célkeresztben a TNT és a Composit B kiváltása. Műszaki Katonai Közlöny, 33(2), 5–21. Online: https://doi.org/10.32562/mkk.2023.2.1

EMBER István (2016): Používanie kumulatívnych náloží na bojisku, s osobitným zretel’om na bojové látky používané v II. svetovej vojne. In MIKULAS, Beránek (szerk.): Trhacia Technika 2016. Banská Bystrica: Slovenská spoločnosť pre trhacie a vŕtacie práce, 187–196.

EMBER István (2022a): Modern kumulatív töltetek hatékonyságának vizsgálata. Haditechnika, 56(6), 15–20. Online: https://doi.org/10.23713/HT.56.6.03

EMBER István (2022b): Hatásvizsgálati robbantás kumulatív töltetekkel. Műszaki Katonai Közlöny, 32(3), 13–23. Online: https://doi.org/10.32562/mkk.2022.3.2

IMEMG – Insensitive Munitions European Manufacturers Group (2023): Representation of the IM requirements 2023 – IM Characteristics. Online: https://imemg.org/im/about-immurat/im-characteristics/

KELEMEN Ferenc (2023): Érzéketlen lőszerek vizsgálatai, felhasználási lehetőségei. Szakdolgozat. Budapest: Óbudai Egyetem BGK, 119.

KOVÁCS Zoltán (2008a): Speciális katonai robbanóanyagok. Robbantástechnika, 29, 17–22.

KOVÁCS Zoltán (2008b): Robbanóanyagok a katonai gyakorlatban. Robbantástechnika, 30, 43–47.

LUKÁCS László (2017): Szemelvények a magyar robbantástechnika fejlődéstörténetéből. Budapest: Dialóg Campus.

NATO STANDARD AOP-39 (2022): Policy for introduction and assessment of insensitive munitions (IM). Edition D, Version 2 March 2022. Online: https://nso.nato.int/nso/nsdd/main/standards?search=AOP-39

NATO STANDARD AOP-39.1 (2022): Guidance on the organisation, conduct and reporting of full scale tests. Edition A, Version 2 March 2022. Online: https://nso.nato.int/nso/nsdd/main/standards?search=AOP-39.1

NATO STANDARD AOP-4240 (2022): Fast heating test procedures for munitions. Edition A, Version 2 March 2022. Online: https://nso.nato.int/nso/nsdd/main/standards?search=AOP-4240

NATO STANDARD AOP-4241 (2022): Bullet impact test procedures for munitions. Edition A, Version 2 March 2022. Online: https://nso.nato.int/nso/nsdd/main/standards?search=4241

NATO STANDARD AOP-4382 (2022): Slow heating test procedures for munitions. Edition A, Version 2 March 2022. Online: https://nso.nato.int/nso/nsdd/main/standards?search=4382

NATO STANDARD AOP-4396 (2022): Sympathetic reaction test procedures for munitions. Edition A, Version 2 March 2022. Online: https://nso.nato.int/nso/nsdd/main/standards?search=4396

NATO STANDARD AOP-4496 (2022): Fragment impact test procedures for munitions. Edition A, Version 2 March 2022. Online: https://nso.nato.int/nso/nsdd/main/standards?search=4496

NATO STANDARD AOP-4526 (2022): Shaped charge jet impact test procedures for munitions. Edition A, Version 2 March 2022. Online: https://nso.nato.int/nso/nsdd/main/standards?search=4526

MIERS, T. Kevin – AL-SHEBAAB, M. Nausheen – PRILLAMAN, L. Daniel (2017): Fragment impact modeling and experimental results for Insensitive Munitions compliance of a 120mm warhead, 14th Hypervelocity impact symposium, Canterbury 24–28. April 2017, Procedia Engineering, 204, 223–230. Online: https://doi.org/10.1016/j.proeng.2017.09.729

PATEL C. (2011): Common Low-cost IM Explosive Program. 30 Nov 2011. Online: https://apps.dtic.mil/sti/tr/pdf/ADA554406.pdf

SOTZKY, Larry – AL-SHEBAB, Nausheen – MAZZEI, Robert (2006): Insensitive Munition (IM) Enhancement of the 120 mm M943A1 High Explosive (HE) Mortar Cartridge. 2006 Insensitive Munitions and Energetic Materials Technology Symposium. Bristol, United Kingdom. 24–27 April 2006. Online: https://imemg.org/wp-content/uploads/imemts2006_Sotsky_1.ppt.pdf

SWIERK Thomas (2012): IM testing and assessments. NATO S&T Organization, 2012. Online: https://www.sto.nato.int/EN-AVT-214-02.pdf