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DESIGN AND IMPLEMENTATION OF NONLINEAR CONTROL 

SYSTEMS FOR ROTARY AND FIXED WING UAVS 

The aim of this paper is to present a novel approach for the design and implementation of onboard nonlinear 

control systems for different types of unmanned air vehicles. The essential difficulty of creating such controllers 

is the inherent nonlinearity of the dynamics of the system, which also introduces a great complexity. Our proposed 

approach relies on an automatic state dependent coefficient (SDC) factorization procedure, which is capable of 

handling the dynamic equations of the system on a symbolic level. The resulting linearized system representation 

is solved by the state dependent Riccati equation (SDRE) method. The applicability of the proposed methodology 

is demonstrated in this paper by means of various examples. 
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INTRODUCTION 

In unmanned air vehicles (UAVs) all flight maneuvers are carried out by a robot pilot that controls 

the aircraft. This means that all the delicate tasks which are performed by skilled pilots in case of 

ordinary aircrafts have to be handled by a computer program, i.e., the autopilot. The autopilot has 

to be capable of estimating the expected motion of the vehicle and must be able to produce the 

control signals for executing the flight plan. These tasks are performed by different computational 

units in the autopilot whose common structure is depicted in Figure 1. 

The sensor fusion unit collects data from the navigational sensors and estimates the orientation 

and state of motion of the vehicle. The estimated state vector is denoted by 𝐱̂. The guidance algo-

rithm compares the actual path of the aircraft with the flight plan and issues commands for cor-

recting the deviations from the desired path. The commands of the guidance unit can also be 

interpreted as a reference state vector denoted hereafter by 𝐱ref. Finally, the control unit calculates 

the necessary actions and creates the control signals for the actuators based on the estimated and 

reference state vectors. When built into the UAV, the three units form a closed control loop to-

gether with the sensors and actuators of the aircraft. This paper, however, focuses only on the 

control unit in the sequel. The state estimation is discussed in more detail in the accompanying 

paper [1]. A possible solution to the guidance problem is addressed later in the present paper. 

 

Figure 1. Common structure of a UAV autopilot 



To produce the appropriate control signals 𝐮 the control unit of the autopilot must be aware of 

the dynamics of the aircraft. Moreover, to arrive at a safe and robust flight control, the autopilot 

has to be able to mitigate the effects of unexpected disturbances such as gusts of wind. Addition-

ally, an efficient control algorithm should produce control signals that are affordable in cost, i.e. 

ones that do not consume large amounts of energy from the battery. Unfortunately, these criteria 

are not straightforward to satisfy at once due to the complexity of the system. The main source of 

this complexity is the nonlinear nature of the problem at hand: both the dynamics of the aircraft 

(i.e. the partial differential equations relating the state variables) and the connections between the 

control signals and the resulting forces and moments acting on the vehicle are inherently nonlin-

ear. Contrary to the case of linear systems there are no general methods for designing optimal 

controllers for systems with nonlinear dynamics. In general, the solution to the nonlinear problem 

is sought by linearization for which different approaches can be applied. [2][3] 

In this paper we introduce a novel approach for developing and implementing nonlinear control 

systems for different types of UAVs. The proposed technique relies on the state dependent 

Riccati equation (SDRE) method [4][5] and an automatic factorization approach. This method 

is beneficial regarding the following aspects. First, the automatic symbolic factorization enables 

the generation of the system matrices directly from the partial differential equations (PDEs) and 

ensures that each term is represented correctly in the factorized system. Second, it is straight-

forward to generate low level computer code from the factorized output. The generated codes 

can directly be uploaded to the onboard navigational computer. We show by means of hard-

ware-in-the-loop simulations that the proposed approach can efficiently be applied for imple-

menting nonlinear control systems for rotary and fixed wing UAVs. 

The subsequent sections of the paper are structured as follows. The next chapter briefly intro-

duces the theory of optimal control systems and discusses the optimal solution of the linear 

problem and its state dependent version. The automatic factorization method and its implemen-

tation are introduced next. Then, the applications of the established nonlinear control method 

are demonstrated by an academic and two real-life examples. Finally, the paper is concluded 

by a brief summary and outlook on further research possibilities. 

OPTIMAL CONTROL 

In this section the mathematical model of a general nonlinear controller is introduced. Then, 

optimal control is discussed briefly and the special case of linear quadratic regulators (LQR) is 

addressed. Finally, the state dependent Riccati equation is considered. 

A dynamic system can generally be described by its state and output equations which read in 

their common form as 

 

Hereafter 𝐱 is the state vector, 𝐮 denotes the input vector of the system, both depending on the 

time variable 𝑡. Differentiation with respect to time is denoted by the upper dot. The vector 𝐲 



is the so-called output vector containing the measurable outputs of the system. In the most gen-

eral case, both functions 𝐟 and 𝐠 can depend on the time variable. The state equation (1) is a 

general system of nonlinear differential equations in which all relations can depend on the ac-

tual state vector and the input vector.  

In a state control system the objective is to generate a control signal 𝐮(𝑡) that makes the state 

vector converge to a given reference state 𝐱ref. This objective is arrived at by introducing a 

feedback mechanism that relates the control signal 𝐮(𝑡) with the error vector 𝐱e = 𝐱 − 𝐱ref. 

Optimal control solves the feedback problem by minimizing a predefined cost functional, de-

noted by 𝐽(𝐮) here: 

 

The control is assumed to be limited to the time interval 𝑡 ∈ [𝑡0, 𝑡𝑐]. The cost functional defines 

the penalty for the deviation of the state vector 𝐱(𝑡) from the reference state by integrating it 

together with the control signal 𝐮(𝑡) weighted by the functions ℎ and 𝑝 and the scalar 𝑞. For-

mally, the optimal control signal 𝐮opt(𝑡) is the one that minimizes the functional 𝐽(𝐮): 

 

The special case of a linear, time invariant dynamic system for which the state and output equa-

tions read as 

 

and the cost functional is quadratic is referred to as the linear quadratic regulator (LQR) prob-

lem. The LQR problem is of special interest since this is the only case where a general optimal 

control can be found in closed form [6]. Figure 2 shows the control loop of the linear system. 

As it is seen the feedback is introduced by means of the feedback matrix 𝐊. 

 

Figure 2. Feedback mechanism in the LQR system 

In the LQR case with taking the limit 𝑡𝑐 → ∞ the cost functional takes the form 

 

with 𝐑 and 𝐐 being positive semidefinite weighting matrices. The feedback matrix 𝐊 is found 

by solving the Riccati equation 

 



for the matrix 𝐏. The feedback matrix 𝐊 and the control signal 𝐮(𝑡) are finally obtained as 

 

where 𝐮ref is the reference control signal. In case of nonlinear systems a possible solution for 

finding a suitable (but theoretically not optimal) control is the extension of the LQR problem. 

This extension is attained by the factorization of the general system equation (1) as 

 

Note that time independence was assumed here without the loss of generality. This extension 

can be used if the so-called state dependent coefficient (SDC) form (10) of the problem exists. 

In this case the same equations (8) and (9) can be used to find the control signal 𝐮(𝑡). However, 

the matrices 𝐏 and 𝐊 will also be state dependent; thus, this approach is referred to as the state 

dependent Riccati equation (SDRE) method [4]. In the following the SDRE method is utilized 

for designing control systems for different UAV applications. 

Unfortunately, as discussed in the next section, it is not trivial to find a suitable SDC form of 

the system equations, even if such factorizations of the problem exist. To preserve the control-

lability of the original nonlinear system, the factorized matrices 𝐀(𝐱, 𝐮) and 𝐁(𝐱, 𝐮) must be 

constructed in such manner that the corresponding linear systems are controllable for all possi-

ble states 𝐱. 

AUTOMATIC SDC FACTORIZATION 

The factorization problem 

To the best knowledge of the authors there is no general approach for finding the best SDC 

factorization of a nonlinear system. For some very simple nonlinear systems the optimal fac-

torization can be found analytically; however, this is not the case for complex, real-life systems. 

The general difficulty of the factorization is that the SDC form is not unique. Even the simplest 

systems can have a continuum number of possible factorizations. Let us consider the following 

two-dimensional example 

 

The system matrices 𝐀 and 𝐁 can be factorized as 

 

The parameter 𝜇 can be an arbitrary real number, which means that a continuum number of 

possible solutions exist. However, different choices of 𝜇 result in different behaviors of the 

linearized system. By choosing 𝜇 = 1 the linearized system becomes unconditionally uncon-

trollable, while any other choice of 𝜇 results in a controllable system, provided that 𝑥1 is not 

zero. The uncontrollability of the former choice (𝜇 = 1) is explained by the fact that the factor-

ized form does not represent the dependence of 𝑥̇1 on 𝑥2 in this case, as the coefficient 𝐴12 is 



zero. This way, the state variable 𝑥1 becomes uncontrollable. In order to preserve the control-

lability property of the original nonlinear system it is important that all relations between the 

state and input variables are represented in the factorized system as well. 

The proposed algorithm 

Our proposed solution for the factorization problem ensures that all relations between the state 

and input variables in the nonlinear are also represented in the linearized system by an auto-

matic, equal factorization of product terms. The algorithm distributes multivariate polynomial 

terms equally among each variable, while leaves non-polynomial terms in their original form. 

An important property of the algorithm is that the computation is done without evaluating the 

derivatives of the vector valued function 𝐟 (i.e., the Jacobi matrix). Thus, the computational 

costs of the proposed method are moderate. This approach is simple, yet it can provide a suitable 

solution in a number of control applications as will be demonstrated in the sequel. 

A simple example is given here to illustrate the mechanism of the algorithm. Let us consider a 

three-dimensional system with 𝐱 = [𝑥1 𝑥2 𝑥3]T and a scalar control signal 𝑢. Let us define the 

first PDE of the system as 

 

Note that the other PDEs are indifferent with respect to the factorization of the first PDE. The right 

hand side of (13) consists of three multivariate polynomial terms, having one (𝑥1), three (𝑥1, 𝑥2, 

𝑥3), and two (𝑥2, 𝑢) variables, respectively. Distributing the terms equally leads to the form 

 

where the factorization of the three terms are shown in separate lines. Here and in the following 

the state or control variable to which the given term is assigned is shown in square brackets for 

the sake of enhanced visibility. Finally, after rearranging the terms we get 

 

with the expressions in parentheses holding the coefficients 𝐴11, 𝐴12, 𝐴13, and 𝐵11 of the ma-

trices 𝐀(𝐱, 𝐮) and 𝐁(𝐱, 𝐮), respectively. To attain the other coefficients the same steps are re-

peated for the other equations. 

This approach leads to the following properties of the SDC form: 

1. The result 𝐀(𝐱, 𝐮)𝐱 + 𝐁(𝐱, 𝐮)𝐮 equals 𝐟(𝐱, 𝐮) for all 𝐱 and 𝐮 vectors. 

2. The hyperplanes resulting from the linearization are generally not tangential to the sur-

faces described by the functions 𝑓𝑖(𝐱, 𝐮), with 𝑓𝑖 denoting the 𝑖-th component of 𝐟. 

The above properties are illustrated in Figure 3 for a simple polynomial function in one dimension. 

As it can be seen, the proposed factorization can result in curves having remarkably different slopes 

than the tangent lines. In particular, for the second linearization point at 𝑥 = 1.75 the slopes have 



different signs. Nevertheless, the detailed mathematical analysis of the proposed approach is not an 

objective of this paper; we focus on the possible applications of the technique instead. 

 

Figure 3. Result of the SDC linearization of a simple, 

one-dimensional function using the proposed algorithm 

Implementation 

The objective of the implementation introduced in this section is the automatic generation of 

controller codes for different UAV setups. For this purpose the proposed automatic factoriza-

tion algorithm is utilized. The generated codes are intended to be used both in an embedded 

environment (the onboard computer of the UAV) and in laboratory simulations for testing and 

tuning different control algorithms. The workflow of the algorithm is illustrated in Figure 4. 

The main steps of the implementation are the following: 

 

Figure 4. Workflow of control system implementation using automatic SDC factorization 

(1) The input of the algorithm is the system of partial differential equations describing the 

dynamics of the UAV in a symbolic form. These PDEs are discretized using a predefined 

time stepping scheme. In general, the simple forward time scheme is suitable. 

(2) The discretized PDEs are factorized by the automatic factorization algorithm. The result 

is a function that computes the matrices 𝐀(𝐱, 𝐮) and 𝐁(𝐱, 𝐮) for the given 𝐱 and 𝐮 inputs. 

(3) The resulting functions can be used exported as (a) C source files or (b) Matlab functions. 

This step is performed by a source code generating routine. 

(4) To be able to run the control algorithm on the embedded computer, the C sources must 

be compiled and an executable code must be generated. This is done by means of an 



optimizing compiler that ensures the best possible performance of the executable code. 

Thus, a code suited for the limited computational power of the onboard computer is ob-

tained. Alternatively, the factorized forms can readily be exported as Matlab functions for 

performing different types of simulations in a PC environment. 

Steps (1) to (3) are carried out exploiting the capabilities of Matlab’s Symbolic math toolbox 

[7]. The latter makes running the factorization algorithm on the symbolic level feasible. 

Since the control algorithm must run real-time in the UAV, it must be capable of performing 

the computationally involving tasks so that the critical timing conditions are satisfied. Further-

more, beside the control unit, the sensor fusion can also contain computationally heavy steps. 

The guidance unit does not require much computational effort. In the penultimate chapter of 

this paper we show by means of hardware-in-the-loop simulations that our implementation ful-

fils these requirements. 

In the SDRE control, the solution of the Riccati equation (8) is the computationally most ex-

pensive step. In the discretized form equation (8) takes a bit different form; however, the solu-

tion is attained in similar steps. This involves solving an eigenvalue problem of order 2𝑛, where 

𝑛 is the number of state space dimensions. There are different approaches for solving the dis-

crete Riccati equation. A direct method is described in [8]. An alternative method that improves 

the numerical behavior of the implementation based on the generalized eigenvalue problem was 

published in [9]. The latter method was implemented in C language using the LAPACK library. 

As far as Matlab simulations are concerned, continuous and discrete time LQR problems can 

readily be solved using the functions named “lqr” and “dlqr”, respectively. 

AN ACADEMIC EXAMPE 

In this section a simplified example is presented which illustrates the limitations of linear con-

trollers in UAV applications. On the other hand, the solution for the same problem using a 

nonlinear controller is also given here. For the demonstration an academic case is chosen: a 

rotary wing aircraft that has only two rotors and which can move only in two dimensions. Be-

fore discussing the example application in detail, the general equations of aircraft dynamics and 

their nonlinear nature are addressed. 

General governing equations of aircraft dynamics 

In general the motion of a UAV can be described as the motion of a rigid body with six degrees 

of freedom: its three-dimensional translation and rotation. These quantities can be defined in 

different coordinate systems. Specifically, we use two different coordinate systems in the fol-

lowing: the Earth reference frame with North–East–Down (NED) axes, and the body frame 

with its axes rotating together with the vehicle. Quantities represented in the Earth and body 

frames are denoted by the upper indices (E) and (B), respectively. 

The translation of a rigid body is governed by Newton's laws of motion, which can be written 

in the following form: 



 

Hereafter 𝐩 and 𝐯 denote the position and velocity vectors, respectively. The takeoff weight of 

the aircraft is 𝑚, and it is assumed that there are 𝑁 elements on the aircraft that create the forces 

𝐅𝑖 (𝑖 = 1, 2, … 𝑁), such as propellers, lifting surfaces, and others. The effect of gravity is taken 

into account with 𝐆 representing the gravitational acceleration vector. Equations (16) and (17) 

can also be written in the body frame; however, for the time being the Earth frame representa-

tion is used. 

The rotational motion of a rigid body is described by the attitude and its dynamics. There are 

different possibilities for representing the attitude, such as Euler angles, rotation matrices, or 

quaternions. First the rotation is described using quaternions, while later an alternative descrip-

tion using Rodrigues parameters is also introduced. A more detailed discussion of attitude rep-

resentations is found in the accompanying paper [1]. 

The dynamics of the attitude using the quaternion representation are written as 

 

where 𝐪 is the quaternion holding the current attitude of the body, and 𝛚(B) denotes the angular 

velocity of the rigid body in the body frame. The rate of change of angular velocity is derived 

from the torques acting on the body as 

 

with 𝐈 denoting the moment of inertia matrix of the body, and 𝐌𝑖 (𝑖 = 1, 2, … 𝑁) representing 

the moments generated by the forces 𝐅𝑖. The symbol × represents the cross product. Contrary 

to the case of translational movement, it is more useful to describe the rotational movement in 

body frame since in the latter frame the matrix 𝐈(B) is constant. 

Equations (16)–(19) are the common dynamic equations of all UAV control applications. It can 

directly be seen that the rotation equation (19) is inherently nonlinear in all applications of our 

interest. The application-specific property of these equations is the way in which the forces and 

moments are related to the state and control variables. Naturally, the latter can be remarkably 

different for different kinds of aircrafts, as it is shown in the subsequent chapters. 

In a state control framework the choice of the attitude representation is important with respect to 

the controllability of the system. For example, rotation matrices and quaternions are not minimal 

representations of the attitude since their components are not independent. This means that systems 

with state spaces containing quantities of these kinds are not controllable after linearization. There-



fore, the quaternion representation used in equation (18) cannot be used in a SDRE control appli-

cation. While Euler angles are a minimal representation of the attitude, they suffer from the problem 

of singularities, also known as the gimbal lock effect. In this paper we use an alternative represen-

tation, the so-called Rodrigues parameters. The latter can be defined by means of a projection of 

four-dimensional quaternions onto a three-dimensional hyperplane, see details in [10]. 

The dynamics of the Rodrigues parameters 𝛔 are given by the equation 

 

The direction cosine matrix (DCM, also known as rotation matrix), denoted here by 𝐑DCM can 

be expressed from the Rodrigues parameters as 

 

Here 𝑛 =  𝛔T𝛔 is the square norm of the Rodrigues parameters and 𝑠 = 1 − 𝑛. The Rodrigues 

parameter representation of the attitude provides a singularity-free description of rotations in 

the range from −360° to +360° along all three axes. 

The Rodrigues parameters also have an attractive property regarding the SDC factorization: 

equation (20) consists only of multivariate polynomial terms. The same holds for the matrix on 

the right hand side of equation (21). It was already seen that such terms are handled efficiently 

by the automatic factorization algorithm introduced above. In the subsequent examples and 

applications these advantageous properties of the Rodrigues parameters are heavily exploited. 

 

Figure 5. Schematic of the two-dimensional copter (left), linearization of lift forces (right) 

A two-dimensional rotary wing aircraft 

The schematic of the two-dimensional copter is shown in the left hand side of Figure 5. It is 

assumed that the copter moves in the 𝑥–𝑦 plane in the Earth frame. The body frame is defined 



by the axes 𝑥′ and 𝑦′, and it is rotated by the angle 𝜑 compared to the Earth frame. For the sake 

of simplicity it is also assumed that the lift forces 𝐅1 and 𝐅2 generated by the rotors are parallel 

to the 𝑦′ axis. The magnitudes of the lift forces are proportional to the angular velocities of the 

rotors Ω1 and Ω2 squared, related by the lift force coefficient 𝐶𝐿 as 

 

The corresponding moments are attained as 𝐌𝑖 = 𝐫𝑖×𝐅𝑖 with 𝐫𝑖 denoting the vector from the 

center of gravity of the aircraft and the center of the 𝑖-th rotor. For the sake of simplicity, it is 

assumed that the two rotors are located at (±𝐷, 0) in the body frame as shown in the left panel 

of Figure 5. The control signals 𝑢𝑖 drive the angular velocities of the rotors through a first order 

low-pass filter with the time-constant 𝜏. 

We define the ten-dimensional state space of the aircraft as 𝐱 =  [𝛏(E) 𝐩(E) 𝐯(E) 𝜎  𝜔  𝛀]
T
, with 

𝛏(E) denoting integral of the position error. The latter is introduced to be able to follow the 

position reference signals without remainder errors. In the two-dimensional system the angular 

velocity of the body is the same in the Earth and body frames, therefore these frame notations 

are omitted. It is worth noting that in two dimensions equations (20) and (21) for the single 

Rodrigues parameter 𝜎 are written as 

 

 

Using the above state space choice the full system of state equations for the copter reads as 

 

with 𝑁rot denoting the number of rotors, and in this example 𝑁rot = 2. 

The state of zero acceleration is of particular interest in the sequel, therefore we define the 

nominal lift force 𝐹nom and the nominal angular velocity of the rotors Ωnom as 

 



Limits for the maximal and minimal angular velocities are introduced as Ωmin = 0 and Ωmax =

2Ωnom. These constraints are enforced by the saturation of the driving signals 𝑢𝑖. 

Both for the linear and nonlinear controllers the simple forward discretization scheme is used: 

 

where the upper indices in parentheses refer to the 𝑛-th and 𝑛 + 1-th time steps, respectively, 

and 𝑇𝑠 denotes the sampling time. In the following examples 𝑇𝑠 = 0.01 s is chosen, which cor-

responds to the control loop frequency 𝑓𝑠 = 100 Hz. The other parameters of the system were 

chosen as: 𝐷 = 0.35 m, 𝑚 = 2 kg, 𝐶𝐿 = 10 N/(krad/s)2, 𝐼 = 0.082 kgm2, 𝜏 = 0.032 s, and 

𝐺 = 9.81 m/s2. 

Here, and in the following parts of the paper the system simulation is always performed using 

equations (16)–(19) and the simple time discretization scheme (27). Thus, in the simulations 

the vehicles are always treated as rigid bodies with six degrees of freedom. 

Linear controller solution 

First, a linearized solution is discussed, which is based on the assumption that the aircraft op-

erates near to its stable equilibrium state. The following conditions are assumed. 

1. The angle 𝜑 is assumed to be small, that is |𝜑| ≪ 𝜋/2. This way, the approximations 

sin 𝜑 ≈ 𝜑 and cos 𝜑 ≈ 1 can be applied. It is also observed that for small angles the 

connection with the Rodrigues parameter 𝜑 ≈ 4𝜎 holds. 

2. The angular velocity of the body is small, i.e. 𝜔 ≈ 0. 

3. The velocity is also assumed to be small, so that |𝐯| ≈ 0. 

Equation (22) is linearized as shown in the right hand side of Figure 5, i.e. 

 

where 

 

The equations for the acceleration are linearized as 

 

Making use of the relation (26), the notation Ω𝑖,lin
′ = Ω𝑖,lin − Ω0 =  Ω𝑖 − Ωnom was introduced. 

Finally, the nonlinear relation for the angular acceleration is transformed as 

 



Note that in the linear case the state variables Ω𝑖 are replaced by the linearized variables Ω𝑖,lin
′  

in the state space. The relation of the latter variables to the driving signals remains the same as 

given in equation (25) if the signals 𝑢𝑖,lin =  𝑢𝑖 − Ωnom are introduced in place of 𝑢𝑖. Using the 

above approximations the system of equations (25) is fully linearized in the vicinity of the stable 

equilibrium position. 

Results of an example simulation using the linear controller are shown in Figure 6. The starting 

state of the system was the equilibrium state except for the angle 𝜑 which was set as 𝜑(0) =

 5°. The simulation was performed on a 25 s long maneuver. The reference position signals are 

shown in the left panel of Figure 6 by the dashed lines. The copter is commanded to go upwards 

15 meters, then to go 10 meters right, and finally to descend 15 meters. Moving in the direction 

of the 𝑥-axis is only possible by controlling the attitude (angle 𝜑) of the copter. As shown in 

the right panel of Figure 6, in this example configuration the linear controller operates in the 

domain −30° < 𝜑 < 30°. Observing the actual trajectory shown by the continuous lines in the 

left panel of Figure 6, it is seen that the controller can follow the reference signals with a small 

delay and a minimal overshoot. It is worth mentioning that the delay and overshoot properties 

are configured in the LQR control system by tuning the weighting matrices 𝐑 and 𝐐 in equation 

(7). This issue is addressed in the last section of this paper. 

While the linear control can provide good results and very low computational costs at the same 

in the vicinity of the equilibrium state, it cannot operate far from the equilibrium point. In this 

example the angle 𝜑 is clearly a limiting factor; the controller cannot be expected to work 

properly if the condition |𝜑| < 𝜋/2 is violated. In the next paragraphs it is demonstrated that 

such limitations can be overcome by using a nonlinear control system. 

 

Figure 6. Example results of the linear control of a two-dimensional hypothetical copter 

Nonlinear SDRE controller 

In the nonlinear controller none of the linear approximations are used. Instead, the following 

“trick” is introduced in the equation for the acceleration. To be able to take the effect of the 

gravitational acceleration 𝐆 into account a dummy variable 𝑥𝑑 is introduced, and equation (25c) 

is written in the form 

 

The dummy variable is included in the state space and its dynamics are expressed as 



 

where 𝜆𝑑 is a positive real constant, and thus 𝑥𝑑 is seen by the controller as a globally stable 

state variable. For such a state variable no feedback is needed and its weight in the weighting 

matrix 𝐐 can be set to zero for the cost functional defined by equation (7). However, in each 

control cycle 𝑥𝑑 = 1 is set manually, thus, by means of equation (33) the effect of the gravita-

tional acceleration is taken into account correctly in the nonlinear controller. 

Since equation (33) incorporates the forces in the Earth frame 𝐅𝑖
(E)

, while the direction of the 

forces depend on the attitude of the aircraft, the DCM defined in equation (24) is utilized to 

transform the lift forces into the Earth frame. Hence, equation (33) becomes a nonlinear relation 

of the variables 𝜎 and Ω𝑖. Equations (25d) and (25e) are also nonlinear. 

To have the same control signals as in the linear case, the rotor angular velocities are shifted by 

utilizing the state variables Ω𝑖
′ = Ω𝑖 − Ωnom and the control signals 𝑢𝑖

′ =  𝑢𝑖 − Ωnom. By this 

choice 𝑢′ = 0 is obtained in the equilibrium state. As it was discussed in the linear controller case, 

these substitutions do not affect the dynamics of the state variables. The factorized matrices 𝐀(𝐱, 𝐮) 

and 𝐁(𝐱, 𝐮) are constructed using the automatic factorization algorithm discussed above. 

Figure 7 demonstrates the stabilization of the 2D hypothetical copter from an extreme starting 

attitude 𝜑(0) =  120°. As it can be seen the copter returns to a stable state after a few seconds 

of initial transient movement. In the left panel of Figure 7 the copter’s response to the same 

reference signal that was shown in Figure 6 for the linear controller is displayed. It can be seen 

that in this configuration the controller gives a slower response to the reference signal and the 

overshoot is also increased a little. However, it should be noted that in this case the weighting 

matrices 𝐐 and 𝐑 were chosen to achieve a wide region of stability and not to provide the 

smallest delay and overshoot. A possible improvement to achieve both a wide region of stability 

and small delay and overshoot at the same time is to adaptively tune the weighting matrices 

depending on the actual state of motion of the aircraft. This possibility is yet to be explored and 

is out of the scope of this paper. 

 

Figure 7. Stabilization of the 2D copter from extreme starting attitude using nonlinear control 

The results shown in Figure 7 indicate that our proposed nonlinear control solution is applicable in 

UAV control systems as it can extend the region of stability of conventional linear controllers. 

Therefore, the applicability of the proposed methodology in real UAVs is examined in the sequel. 

  



NONLINEAR CONTROL OF A DJI-F450 QUADROCOPTER 

The DJI-F450 quadrocopter 

In this section the simulation of the nonlinear control of a DJI-F450 type quadrocopter is dis-

cussed. This quadrocopter is a general purpose commercially available rotary wing airframe. 

The mechanical parameters of the airframe were identified as listed in Table 1. It is noted that 

the airframe can be mounted with different motors, rotors, and electronic devices. The values 

given in Table 1 correspond to a specific configuration assembled in the frame of this study. 

The notation 〈∙〉 in the table stands for a diagonal matrix of the given elements. 

The controller for the quadrocopter is based on the applications of the relations given as equa-

tion (25). However, in order to get a more realistic model some modifications are introduced 

compared to the two-dimensional case. In the 3D model it is useful to take the effect of gyro-

scopic moments and drag forces into account. The force 𝐅𝑖 and the torque 𝐌𝑖 induced by the 𝑖-

th rotor are expressed as 

 

where 𝐝𝑖 is the direction of the lift force (expressed in the body frame), 𝑠𝑖 is the sign of the 

angular velocity of the 𝑖-th rotor, 𝐼𝑝 is the inertia of a rotor and motor pair and 𝐶𝐷 is the drag 

coefficient. For the sake of simplicity, it is assumed that 𝐶𝐿, 𝐶𝐷, and 𝐼𝑝 are the same for all four 

motor–rotor pairs. The three terms on the right hand side of equation (36) are associated with 

the torque generated by lift forces, drag forces, and gyroscopic moments, respectively. 

Since the system is three-dimensional, the dynamics of the Rodrigues parameters are governed 

by equation (20) instead of equation (25c). As it was discussed above, the Rodrigues parameters 

provide a singularity-free description of the attitude in the −360° to +360° range. To be able 

to perform maneuvers consisting of more than one turns, an alternative interpretation of the 

Rodrigues parameters is used here. A reference coordinate system represented by the rotation 

matrix 𝐑ref is introduced, and the Rodrigues parameters are interpreted as attitude errors com-

pared to the reference orientation. Thus, the transformation from the Earth to the body frame is 

described by the DCM denoted by 𝐑DCM given as 

 

where 𝐑rod is calculated from the Rodrigues parameters using equation (21). Since the attitude 

error is always in the −180° to +180° range, the description of the attitude becomes free of 

singularities even for maneuvers including several turns around an axis. 

The eighteen-dimensional state space of the controller includes the position and the velocity of 

the aircraft in the Earth frame, the Rodrigues parameter triplet, the angular velocity of the UAV 

in the body frame, the angular velocity of each rotor, the integral of the position error along the 

𝑧-axis only and the dummy variable introduced by equations (33) and (34). Similar to the case 

of the hypothetical copter, the control signals 𝑢𝑖 are assumed to drive the angular velocities of 

the rotors through a first order low-pass filter represented by the time-constant 𝜏. The latter 



assumption may be considered as an oversimplification; however, measurements performed on 

the motor controller indicated that this simplification is suitable. 

Parameter Notation Value 

Takeoff weight 𝑚 1.4 kg 

Moment of inertia matrix 𝐼(B) 〈0.0104, 0.0104, 0.0196〉 kgm2 

Lift coefficient of rotors 𝐶𝐿 27.153 N/(krad/s)2 

Drag coefficient of rotors 𝐶𝐷 0.607 N/(krad/s)2 

Inertia of a rotor and motor pair 𝐼𝑝 1.375 ∙ 10−3 kgm2 

Nominal angular velocity of rotors Ωnom 3395 RPM 

Rotor positions 𝑟𝑖 (±0.16, ±0.16, 0) m 

Lift force directions 𝑑𝑖 (0, 0, −1) [−] 

Rotor angular velocity signs 𝑠𝑖 (−1, +1, −1, +1) [−] 

Table 1. Parameters of the DJI-F450 airframe 

Matlab simulation 

The nonlinear controller for the DJI-F450 copter was first implemented in the frame of a Matlab 

simulation. Again, the proposed SDC factorization method was utilized to attain the system 

matrices. To simulate the limited computational resources available on the onboard computer, 

the update of the factorized matrices 𝐀(𝐱, 𝐮) and 𝐁(𝐱, 𝐮) was performed only every tenth cycle 

of the simulation. Thus, the control rule 𝐮 = −𝐊𝐱e is calculated in each simulation cycle, 

whereas the feedback matrix 𝐊 is updated (and the state dependent Riccati equation is solved) 

only every tenth cycle. This means a significant reduction of the required computational effort. 

The simulation of an example flight path is shown in Figure 8. The sixty-second-long flight 

plan consists of three parts. (1) In the first 10 seconds the quadrocopter is commanded to take 

off from the origin and to reach the first waypoint at (0, 10, −10) m. (2) Then, in the next 20 

seconds, the copter travels 20 meters along the 𝑥-axis and rotates two whole rounds around the 

𝑧-axis in the positive direction. (3) Finally, in the last 30 seconds the copter ascends another 10 

meters while making a half circle with 10 meters radius to arrive to the last waypoint at 

(20, −10, −20) m. All reference states except the position and the yaw angle are zero during 

the whole maneuver. As it is seen in Figure 8, the controller makes the copter follow the refer-

ence path with very small errors. Note that the 𝑦 and the 𝑧 axes are mirrored in the left panel of 

Figure 8 due to the limitations of the plotting program. The forward direction of the airframe is 

indicated by the red rotors in Figure 8. 

The resulting Euler angles are shown in the right panel of Figure 8. It is seen that the copter 

follows the reference yaw angle with a small delay. The two complete turns around the 𝑧-axis 

are also performed with maintaining small errors. It can be assessed that the implemented con-

troller is capable of driving the copter in case of usual flight commands. 



 

Figure 8. Simulation of flying a test trajectory with the DJI-F450 quadrocopter using SDRE control 

In order to examine the robustness of the controller, another simulation was performed in which 

the copter was started from an instable state: the initial roll angle 𝜑 was set as 𝜑(0) = 150°. 

This corresponds to a nearly upside-down attitude. For the sake of simplicity, the initial values 

of the other state variables correspond to the equilibrium state, which is also the reference state 

in this case. The results of a ten-second-long simulation are shown in Figure 9. It is seen that 

the copter is stabilized in a few seconds. Apparently, during the stabilization process, the air-

craft only loses less than 1 meter of altitude. In the 𝑦 direction the maximum deviation from 

the reference position is around 3.5 meters. The small loss in altitude is due to the incorporation 

of the position integral along the 𝑧-axis into the state space. Results illustrated in Figures 8 and 

9 indicate that the proposed control method is applicable in real UAVs and can handle both 

normal and extraordinary flight conditions. 

 

Figure 9. Stabilization of the DJI-F450 quadrocopter using SDRE control from an extreme attitude 

Hardware-in-the-loop simulation 

To test the control unit inside the embedded environment of the onboard computer, a hardware-

in-the-loop simulation was also performed. In this case, the controller is not run in a PC simulation 

but an executable is generated by means of the steps (3a) and (4a) as shown in Figure 4. Contrary 

to the simulations presented so far, in this case the whole autopilot system was tested, i.e. all three 

blocks (sensor fusion algorithm, guidance, and control) were running real-time on the onboard 

computer as illustrated in Figure 1. Furthermore, beside the navigational tasks, a communication 

task is also incorporated into the system. This way, the aircraft was controlled from the user in-

terface of the ground control station (GCS) application. Finally, it is also worth mentioning that 



opposed to a real-life flight scenario the system simulation (modeling the dynamics of a rigid 

body with six degrees of freedom) was also implemented inside the onboard computer. 

The simulation scenario consists of the following steps. First, the user can construct a flight 

plan composed of various mission items (waypoints, loitering etc). Then, a mission script is 

generated and transferred to the vehicle. Upon receiving the script the vehicle checks if all the 

items in the script are valid. If a valid script was received the execution of the flight plan can 

begin. In the simulation environment, at the beginning the simulated vehicle is transferred au-

tomatically to the home position and starts the flight from there. 

During the simulated flight fictitious sensor signals corrupted by noise, offset, and distortion 

on purpose are generated based on the simulated state of motion of the aircraft. To model the 

behavior of real sensor measurements the statistical properties of the noise and offset were cho-

sen corresponding to the information given in the data sheets of the onboard sensors. From these 

corrupted signals the sensor fusion algorithm [1] predicts the actual state of the vehicle. A sim-

ple guidance method generates the reference signal for the controller such that the aircraft al-

ways heads towards the current waypoint. When a waypoint is reached, the vehicle hovers and 

turns around the 𝑧-axis towards the next waypoint. 

A snapshot of the user interface of our Ground Control Station application (GCS) during the 

hardware-in-the-loop simulation is shown in Figure 10. As seen, the map and the flight plan is 

shown in the left of the screen, with the green line indicating the path of the vehicle. In the top 

right part an artificial horizon is visible which helps the pilot and the operator in case of flight 

by remote control. The bottom right part of the screen is occupied by a customizable dashboard 

on which different functions and measured values can be plotted. As shown in the figure, the 

controller operates properly in the embedded environment and is capable of producing control 

signals in a real-time manner. Moreover, it is also seen that the control unit can work in coop-

eration with the sensor fusion and guidance units. 

 

Figure 10. Hardware-in-the-loop simulation of the DJI-F450 copter in the ground control station 



NONLINEAR CONTROL OF AN X8 RIGID WING UAV 

Aerodynamic forces in the nonlinear control system 

Similar to the rotary wing aircrafts discussed above, the control of a rigid wind aircraft also 

relies on the dynamics of a rigid body, governed by equations (16)–(19). However, in a rigid 

wing aircraft the forces and moments acting on the body have a much more complex depend-

ence on the state of motion of the vehicle and the state of the actuators. For example, the de-

flections of different control surfaces affect the resulting lift and drag forces significantly. In 

the sequel the lift, drag, and propulsion forces are evaluated based on the study of Gausz & Gáti 

[11]. The incorporation of these forces into the SDRE controller also involves some simplifi-

cations which are discussed briefly in the following paragraphs. 

The lift and drag forces are assumed to act in the aerodynamic center (AC) of the wing, as 

depicted in the right panel of Figure 11. The aerodynamic center of each wing is calculated 

making use of the mean aerodynamic chord (MAC). The aerodynamic forces are usually ex-

pressed in the non-inertial aerodynamic (or wind) coordinate system denoted here by the upper 

index (A). In the calculation the so-called surface coordinate system (fixed and aligned to the 

lifting surface) is also utilized and denoted by the upper index (S). 

The relative air speed 𝐕 of the aerodynamic center of a lifting surface is expressed in the body 

frame as 

 

where 𝐫AC
(B)

 is the vector from the center of gravity (CG) to the AC, 𝐕wind
(B)

 is the speed of wind 

expressed in the body frame, and 𝐕ind
(B)

 is the so-called induced air speed. The aerodynamic force 

generated by the 𝑖-th lifting surface is expressed as 

 

where 𝜌 is the density of air, 𝐕𝑖 and 𝑆𝑖 are the relative air speed and the area of the 𝑖-th lifting 

surface, with the former obtained using equation (38). The lift and drag coefficients of the 𝑖-th 

surface are denoted by 𝐶𝑖,𝐿 and 𝐶𝑖,𝐷, respectively. The aerodynamic forces generated by each 

lifting surface are transformed into the body frame using the relation 

 

where the rotation matrices 𝐑(S)
(B)

 and 𝐑(A)
(S)

 denote transformations from the frame shown in the 

lower index to the frame shown in the upper index. 

The coefficients 𝐶𝐿 and 𝐶𝐷 depend on the angle of attack 𝛼. Based on the study of Gausz & 

Gáti [11] the following approximations are introduced. For the lift forces 



 

 

Figure 11. Definition of the aerodynamic center of a wing (left), lift forces and their approximations (right) 

Here 𝐶𝐿𝛼 is the specific lift force coefficient, 𝛼𝑠 is the critical angle of attack and 𝑘 is a constant 

factor. The drag forces are approximated as 

 

with 𝐶𝐷0 and 𝐶𝐷max denoting the drag force coefficients at 𝛼 = 0° and 𝛼 = 90°, respectively. 

Each wing can be mounted with control surfaces, whose effect are taken into account by the 

modification of the angle of attack. The modified angle 𝛼ctr is attained as 

 

with 𝛿 denoting the deflection of the control surface from the equilibrium position and 𝜕𝛼/𝜕𝛿 

is the control efficiency. The deflection of the control surfaces also result in a change of the 

aerodynamic forces represented by Δ𝐅(A), which reads as 

 

where 𝑆ctr, 𝐶𝐷ctr, and 𝐶𝐿ctr are the area, the drag, and the lift coefficients of the control surface, 

respectively. The results of the approximations introduced in equation (41) are compared to the 



results of the original equations of [11] in the right panel of Figure 11. In the top diagram, the 

control surface is in its trimmed state, whereas in the bottom diagram a state with ∆𝛼 =

𝜕𝛼/𝜕𝛿 ∙ 𝛿 = 9° is shown. As it can be seen, the introduced approximations closely follow the 

original curves for the whole range of the angle of attack. It is worth noting that the above 

simplifications were chosen to make the SDC factorization of the system feasible. 

The thrust generated by the propulsion is taken into account in a similar way as in the case of 

the quadrocopter; however, the dependence of the thrust coefficient on the advance ratio [11] 

is also taken into consideration in this case. For the sake of brevity, the corresponding equations 

are omitted here. 

From the above discussion it is clear that the deflection of the control surfaces are related to the 

state of motion of the rigid wing aircraft in a complex manner. In order to reduce this complexity 

to some extent, the following approximations are also introduced. 

1. The effect of the wind and induced velocities are neglected in equation (38). 

2. During normal flight, only the 𝑧-component of the angular velocity 𝛚(B) can be signif-

icantly different from zero. This means a further simplification to equation (38). 

3. For the calculation of the rotation matrix 𝐑(A)
(S)

 it is assumed that 𝑉𝑦
(S)

 and 𝑉𝑧
(S)

 are small 

compared to 𝑉𝑥
(S)

. This results in a remarkable simplification of the symbolic expression 

of the rotation matrix 𝐑(A)
(S)

. 

4. The body of the aircraft can produce both lift and drag forces in reality. However, the 

former are neglected in the control model. 

Control of the X8 UAV 

The X8 is a commercially available foam airframe. An X8 aircraft assembled in the frame of 

our project is shown in Figure 12. The X8 is a flying wing aircraft, controllable by a single 

propulsion system located at the back of the body and two hinged control surfaces, one for each 

wing. A small winglet is present on the end of both wings. 

 

Figure 12. AMORES X8 aircraft during flight 

In the control system, it is assumed that the control signals drive the deflections of the control 

surfaces and to the angular velocity of the propeller through first order low-pass filters. The 

control signals are introduced as 



 

Here Ω is the angular velocity of the propeller and 𝑢𝑝 is its driving signal. The quantities 𝛿± 

symbolize 𝛿1 ± 𝛿2, where 𝛿𝑖 is the deflection of the 𝑖-th control surface. The corresponding 

control signals are denoted by 𝑢±. The time-constants of the low-pass filters are denoted by 𝜏𝑝 

and 𝜏𝛿, respectively. The seventeen-dimensional state space consists of the position of the air-

craft, its velocity represented in the body frame, the Rodrigues parameter triplet, the angular 

velocity of the body, the three control state variables (Ω, 𝛿+, and 𝛿−), the integral of the position 

error along the 𝑧-axis and the dummy variable 𝑥𝑑. Since the velocity of the body is expressed 

in the body frame equation (17) is replaced by the relation 

 

with 𝑁aero denoting the total number of components creating aerodynamic forces. In our case 

𝑁aero = 4 as the X8 airframe has two wings, a body, and one propulsion system. For the im-

plementation of the control system, precise identification of the aircraft was also required. The 

most important parameters of the system were identified as listed in Table 2. 

The control of the X8 aircraft was simulated inside Matlab utilizing the automatic factorization 

procedure again. To generate the reference signals, the so-called L1 guidance algorithm was 

used as defined in [12]. This simple guidance algorithm provides a lateral acceleration com-

mand based on the deviation from the desired trajectory. 

Parameter Notation Value 

Takeoff weight 𝑚 3.2 kg 

Moment of inertia matrix 𝐼(B) 〈0.8, 0.06, 0.86〉 kgm2 

Wing span  2.22 m 

Wing areas 𝑆𝑖 0.345 m2 

Specific lift coefficient 𝐶𝐿𝛼 4.37 [−] 

Minimal drag coefficient 𝐶𝐷0 0.009 [−] 

Critical angle of attack 𝛼𝑠 13.5°  

Effective control surface area 𝑆ctr 0.175 m2 

Control efficiency 𝜕𝛼/𝜕𝛿 0.3 [−] 

Nominal (trim) velocity 𝑣nom 12 m/s 

Nominal angular velocity of propeller Ωnom 2750 RPM 

Inertia of propulsion 𝐼𝑝 1.4 ∙ 10−3 kgm2 

Table 2. Identified parameters of the X8 aircraft 

The results of the simulation are displayed in Figures 13 and 14. The flight plan consists of a 

number of waypoints, as shown in the left panel of Figure 13. The position of the aircraft is also 

displayed on the right hand side of the figure, where the reference signals are notated by dashed 

lines. As seen, the vehicle closely follows the reference path with a maximal deviation of around 

10 meters. 



The resulting Euler angles are displayed in the left panel of Figure 14. The reference signals are 

indicated by dashed lines again. The switching between waypoints are clearly visible in the 

reference signals. It is noted that in this case both the reference position and Euler angles are 

generated online during the simulation. The control state variables are shown in the right hand 

side of Figure 14. As it can be seen, the control is achieved by using both the deflectors and the 

propulsion, as expected. It is also seen that the control signals vary smoothly in time, which 

indicates that the dynamics of the controller are well fitted to the dynamics of the system. Com-

paring the deflections of the control surfaces and the Euler angles, the effect of the control on 

the attitude is clearly observable. 

 

Figure 13. Simulated flight control of the X8 aircraft: waypoints and path (left), position signals (right) 

 

Figure 14. Simulated flight control of the X8 aircraft: Euler angles (left) and control variables (right) 

Based on the above results it can be assessed that the proposed nonlinear control approach is 

applicable also in a rigid wing UAV control system. It should be emphasized that incorporating 

the aerodynamic force calculation represented by equations (38)–(44) introduces a great com-

plexity in the control equations. The simulation results indicate that the proposed control 

method is capable of handling this enhanced complexity. 



CONCLUSIONS AND OUTLOOK 

In this paper a nonlinear control approach based on the state dependent Riccati equation (SDRE) 

method was introduced. For the generation of the state dependent coefficients (SDC) form of 

the system matrices an automatic symbolic factorization algorithm was proposed. This algo-

rithm was utilized in different UAV control applications, including academic and real-life ex-

amples. It was shown that the suggested nonlinear control approach can overcome the limita-

tions of common linear controllers and can provide an extended domain of stability. Several 

scenarios were tested during the study, including Matlab modeling and hardware-in-the-loop 

simulations. It was also demonstrated that the proposed control algorithm can also operate in 

an embedded hardware environment. 

Case 
State space 

dimensions 𝑛 

Number of 

terms in 𝐀(𝐱, 𝐮) 

Number of 

terms in 𝐁(𝐱, 𝐮) 

Hypothetic 2D copter 11 64 2 

DJI-F450 quadrocopter, 𝐯(B) 18 692 4 

DJI-F450 quadrocopter, 𝐯(E) 18 1 356 4 

X8 rigid wing aircraft 17 2 094 3 

Table 3. SDC factorization properties of the UAV systems discussed in the paper 

It was seen that the nonlinearity of the dynamic equations introduces a great complexity in the 

system. The number of factorized terms in the SDC form are summarized in Table 3 for the dif-

ferent UAV systems discussed in the paper. It is seen that the real-life examples involve several 

hundreds of terms, which would be rather tedious to evaluate manually. Thus, the automatic fac-

torization procedure can be well exploited in real-life UAV control systems. It is worth mention-

ing that in the case of the DJI-F450 quadrocopter the choice of the coordinate frame for the ac-

celeration equation  see equations (17) and (47)  results in a huge difference regarding the 

number of factorized terms. The two cases are denoted by 𝐯(E) and 𝐯(B) in the table, respectively. 

The detailed mathematical analysis of the proposed factorization algorithm was out of the scope 

of this paper; however, the rigorous analysis of the resulting stability regions are indeed of great 

importance for validating the methodology. Another possibility for further studies is the method 

of constructing the weighting matrices 𝐐 and 𝐑. To the best knowledge of the authors there are 

no general method for this issue, while the choice has a great influence on the performance of 

the resulting control system. These two particular issues have high priority in the short term 

research plan of the authors. 
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NEMLINEÁRIS SZABÁLYZÓRENDSZEREK TERVEZÉSE ÉS MEGVALÓSÍTÁSA 

FORGÓ- ÉS MEREVSZÁRNYAS ROBOTREPÜLŐGÉPEKHEZ 

Jelen cikk célja egy új módszer bemutatása robotrepülőgépek nemlineáris fedélzeti irányítási rendszereinek ter-

vezéséhez és megvalósításához. A megoldandó feladat legfőbb kihívását a rendszer viselkedését leíró dinamikai 

egyenletek nemlineáris természete jelenti, mely egyben a megtervezendő szabályzó nagy komplexitásával is jár. Az 

általunk javasolt módszer egy automatikus állapotfüggő (SDC) faktorizációs eljáráson alapszik, mely képes a 

rendszeregyenleteket szimbolikus formában is kezelni. Az ennek segítségével létrejövő linearizált rendszerre-

prezentációt az állapotfüggő Riccati-egyenlet (SDRE) módszerrel oldjuk meg. A javasolt módszer alkalmazásának 

lehetőségeit a cikkben több példával is szemléltetjük. 

Kulcsszavak: UAV, nemlineáris szabályzó, automatikus SDC faktorizáció, állapotfüggő Riccati-egyenlet (SDRE) 
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