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WAVELET-BASED NOISE REMOVAL TECHNIQUE FOR 

REMOTELY-SENSED DATA 

Filtering of the LiDAR data is challenging due to the complex distribution of the surface and the various types of 

contaminating noises. Also the collected data contain much information that requires the appropriate pre-pro-

cessing in order to generate good In this paper a new approach has been proposed for denoising and processing 

LiDar data. The proposed method utilize the advantages of multiresolution analysis and robust fitting. It has been 

shown that it excellently removes both additive noise and artifacts with retaining the important parts of the surface 

model. The method requires only low resolution levels and is able to avoid data loss. 
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INTRODUCTION 

Noise cancellation is a primary issue of the theory and practice of signal processing. Several 

areas of engineering practice benefit from such algorithms, for instance monitoring and fault 

detection applications, data mining, feature identification in satellite images, etc. LIDAR (LIght 

Detection And Ranging) is a remote sensing technique based on laser technology. It measures 

the two way travel time of the emitted laser pulses to determine the distance between the sensor 

and the ground With LiDAR (Light Detection and Ranging) or airborne laser scanning instru-

ments mounted in aircrafts it has become possible to directly map the elevation of the surface 

beneath the aircraft's flight path. Combined with a Global Positioning System (GPS) and an 

Inertial Measurement Unit (IMU), LIDAR can generate a three-dimensional (3D) dense, geo-

referenced point clouds for the reflective terrain surface  

The database collected by LIDAR is a point cloud in three dimensions which contain points 

returned from the terrain objects, including ground, buildings, bridges, vehicles, trees, and other 

non-ground features. For many applications it is important to detect, separated, or removed the 

artifacts in order to generate the digital elevation model [1]. While other applications require 

the precise reconstruction of the objects. Thus pre-processing is amost important step which 

includes operations such as remove of systematic errors, filtering, feature detection and extrac-

tion,etc. [1]. A comprehensive overview of the major applications of airborne and terrestrial 

laser scanning can be found in for e.g. [2]. 

Filtering of the LiDAR data is challenging due to the complex distribution of the surface and 

the various types of contaminating noises. Also the collected data contain much information 

that requires the appropriate pre-processing in order to generate good DEMs (Digital Elevation 

Model) or DSMs (Digital Surface Model) [3][4]. 

Traditional approaches, such as linear filtering, can smooth the corrupted signal, but with weak 

feature localization and incomplete noise suppression. Nonlinear filters have been proposed to 

overcome these limitations.  



Among the classical signal processing methods, wavelet-based noise reduction has been suc-

cessfully applied to filter data, because it provides information at a level of detail, which is not 

available with Fourier-based methods [5]. Several studies have been carried out regarding the 

utilization of wavelet theory, for e.g. see [6]. The discrete wavelet transform analyses the signal 

at different frequency scales with different resolutions by reducing the signal into approximate 

and detail information. For removing noise, wavelet shrinkage employs nonlinear soft thresh-

olding functions in the wavelet domain. The popularity of this nonparametric method is due to 

the excellent localization and feature extracting behavior. However several threshold estimators 

exists, it is still a challenging task to select the appropriate shrinkage method that fits to the type 

of signal and contaminating noise and further, is robust against impulse type noises 

[7][8][9].The other major issue in noise reduction is minimizing the effects of extreme values 

or elements that deviate from the observation pattern (outliers) [10][11]. LiDAR signals contain 

detailed information and may also contain outliers and random noise, as well as speckle noises 

that should be filtered out in order to obtain good quality final results.  

Several aerial reconnaissance tasks require real-time immediate processing of the data. In order 

to obtain a good quality result in short time, fast and improved denoising methods are needed. 

This paper presents a new adaptive shrinkage approach applying adaptive robust fitting tech-

nique in the wavelet domain. Using the advantages of multiresolution analysis and robust fit-

ting, efficient denoising can be obtained at low resolution levels providing simultaneously high 

density impulse noise removal. The proposed algorithm has been tested on LiDAR elevation 

data. Simulation results demonstrate the applicability of the proposed scheme and ensures good 

performance by correctly removing the noises and also the spikes and artifacts. 

WAVELET SHRINKAGE 

1 Basics on Wavelet Transform  

In this section we give short outline on the background of wavelet transform. The wavelet trans-

form (WT) maps a time function into a two-dimensional function of (scale) and  (translation 

of the wavelet function along the time axis). Signal s(t)   L2 is assumed to be a square integra-

ble meaning  
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The continuous wavelet transform (CWT) of s(t) is given by [5] 
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where ψ (t) denotes the basic (mother) wavelet function. In comparision with the STFT (short 

time Fourier Transform), in the WT the window width changes mean the dilation or compres-

sion a carrier frequency ω0 becomes ω0 /  for a window width change from T to    T.  When 

theψ (n) is a discretization of ψ (t) the discrete WT can be written as follows, 
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where k,m integers. 

2 Principles of Multiresolution Analysis  

The idea of multiresolution analysis (MRA) lies in dividing a signal s(n) into a set of (fre-

quency) scales. of 2-k. Associating with each scale (frequency band) is a subspace of Vk. For-

mally, let’s consider a sequence of increasing nested spaces  H  ...... 101 VVV0 , that form 

the basic resolution structure. The scaling function is H , and its integer n
 translates (

Zn ) form an orthonormal basis for one of the subspaces Vk of H.  

Let  Hkk VV :  be an increasing sequence of subspaces and 
0V . The multiresolution analy-

sis of the pair   ),( kV of H is defined as follows according to [8] 

• there is a function 
0V , such that nn  is an orthonormal basis for 0V  , and 

• if any arbitrary function
kV f  then 

1k2 VD  f  (dilation invariance), further, 

• H jV and  0Vj   (completeness). 

Basically, the MRA representation can be constructed by by the integer translation and power 

of two dilations (denoted by 
2D ) of the scaling function  . Under the assumption that   ),( kV  

is a multiresolution analysis of H, let kL , denote the representation associated with the se-

quence of functions n2kD . For an arbitrary function H f  , it’s kth resolution representation 

can be written as [5][8], 
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a discrete sequence of dilations and translation. Generating an orthonormal basis requires or-

thogonality between the levels, e.g. the subspaces Vk are not orthogonal to each other. It is 

necessary to define an auxiliary sequence of subspaces {Wk: Wk+1H}, complementary to Vk 

and orthogonal to Vk+1, for each level k that characterizes the difference between Vk and Vk+1  - 

which are the wavelet subspaces, so 

 Vk+1=Vk+Wk , and 

 Vk+Wk.  

As the scaling function  , the candidate analyzing wavelet is also a member of Vi , thus there 

are unique sequences (the scaling filter coefficients)    1n Lh ,  and (the wavelet filter coeffi-

cients) 
    1,n Lg

, such that, we can formulate the scaling function [8] 
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and the wavelet function [8] 

 
)nt2(g)t(

n

n  
 (6) 

  



3 Wavelet Shrinkage  

The first step of wavelet shrinkage is the decomposition of signal into the wavelet (detail and 

approximate) coefficients, as described in the previous section. The general idea behind wavelet 

shrinkage is to replace these coefficients with small magnitude to zero (hard thresholding), or 

set their value to the λ threshold level [12]. Then, the reconstruction process performs the in-

verse discrete wavelet transform (IDWT). Most of the widely known shrinkage methods con-

struct nonlinear threshold functions based on statistical considerations. An effective and 

smoothness-adaptive method (SureShrink) is proposed to thresholds each dyadic resolution 

level using the principle of Stein’s Unbiased Estimate of Risk [13][14]. The universal bound 

thresholding rule also provides good results with low computational complexity [13]; the rule 

is defined, as follows, 
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where 
6745.0
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
  denotes the absolute median deviation..The Heuristic Sure thresholding 

rule is introduced by a heuristic combination of the SureShrink and the universal bound [13]; 
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The specific choice of the wavelet function, decomposition level, and thresholding rule allows 

to construct many different shrinkage procedures. Further, the details of signal and also the type 

of contaminating noise.  

ADAPTIVE SMOOTHING IN THE WAVELET TRANSFORM DOMAIN 

1 Robust Fitting and Outlier Detection  

Many works have been published on eliminating the outliers during the signal pre-processing. 

It has been proven, that the robust local polynomial regression technique is a very powerful 

technique for such problems [15]. At first, consider the classical noise suppression problem: 

 𝑦𝑖 = 𝑓(𝑡) + 𝜀𝑖            i=1,…,s (10) 

where yi is the observed noisy data and i represents the random noise, which is an independent 

and identically distributed (iid) process, and (t) stands for time. Let f denote the unknown func-

tion. The principle of the local polynomial regression (loess) procedure can be summarized as 

follows. Function f(t) can be approximated by fitting a regression surface to the data by deter-

mining a local neighbourhood of an arbitrary (t0). These neighbouring points are weighted de-

pending on their distance from (t0). The closer points get larger wi weights [16]. The estimate 

f̂  is obtained by fitting a linear or quadratic polynomial using the weighted values from the 

neighbourhood. Because this procedure relies on least squares regression,it is known that this 



is vulnerable to outliers that can significantly degrade the result. In order to introduce robustness 

in the procedure an iterative reweighting is proposed with bisquare method [16]. Detailed de-

scription of these procedures can be read in [17]. 

2 Noise-cancellation of Remotely-sensed Data  

In order to produce a good elevation model from LiDar data that meets the required accuracy 

an appropriate noise cancellation method should be applied. There are sevearl source of noise 

that can occur in airborn the laser scanning system that can distort the data. In a previous work 

of the autors, it has been shown that the application of robust fitting in the wavelet trasform 

domain can remove excellently different types of contaminating noises [18]. In the present pa-

per we demonstrate that the improved version of the previous method is suitable for prepro-

cessing LiDar data. The proposed method includes the following steps. Firstly, the raw data of 

the vertical direction is decomposed with orthogonal wavelet functions that correctly divide the 

detail and approximate coefficients of the signal. Then, a local polynomial regression curve is 

fitted on the coefficients with wi weights. After computing the residuals the robust weights are 

calculated with bisquare function and the fitting is repeated with these new weights. Finally, 

the inverse discrete wavelet transform reconstructs the data from such modified coefficients.   

3 Simulation Results  

The performance of the proposed method has been tested on a set of raw LiDar point cloud 

obtained from [19][20] that corrupted with additive white Gaussian noise and impulse noises 

(Fig.1.). The dataset consists of 4772 points. The results have been compared with two other 

shrinkage algorithms. The simulation has been built by using Matlab8. The performance has 

been measured by the root mean square error (RMSE) and the signal to noise ratio (SNR), given 

by the formula below 
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where s
2  denotes the variation of the signal after denoising and n

2  is the variation of the 

eliminated noise. For the decomposition an orthogonal symlet has been applied [5] . The results 

are summarized in Table1. Fig. 2. shows the result of denoising with the Heuristic Sure method 

using 5 levels of decomposition while Fig. 3. displays the result for using minimax shrinkage 

rule at 8 level of decomposition. It can be observed that the classical shrinkage methods cannot 

handle the outliers. In Fig 4. the performance of the proposed method can be observed using 3 

levels of decomposition.  



 

Figure 1.: Raw LiDar data with additive white Gaussian noise and impulse – type noises 

 

Figure 2.: Result of noise removal with Heuristic Sure method.  



 

Figure 3.: Result of noise removal with Minimax shrinkage method.  

 

Figure 4.: Result of noise removal with robust fitting in the wavelet transform domain.  

  
Original noisy 

data 

Denoised data 

(heursure) 

Denoised 

data  

(minmax) 

Denoised data 

(robust fitting in 

wavelet domain) 

SNR [dB] 3.29891 E+01 3.7991270E+01 4.00261E+01 5.75986 E+01 

RMSE 1.54890E+00 1.0324 1.1230 0.532 

Time [s]  1.11579E+00 1.79541E+00 1.02549E+00 

Table 1: Simulation Results 

  



CONCLUSIONS  

In this paper a new approach has been proposed for denoising and processing LiDar data. The 

quality of the point cloud data produced by airborne lase scanning depends on several factors 

for instance the GPS and Inertial Measurement Unit accuracy, angular accuracy, extended GPS 

base lines and boresight calibration, etc. LiDAR signals contain detailed information and may 

also contain outliers and random noise, as well as speckle noises that should be filtered out in 

order to obtain good quality final results.  

The proposed method utilize the advantages of multiresolution analysis and robust fitting. It 

has been shown that it excellently removes both additive noise and artifacts with retaining the 

important parts of the surface model. The method requires only low resolution levels and is able 

to avoid data loss. 
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TÁVÉRZÉKELT ADATOK WAVELET-ALAPÚ ZAJSZŰRÉSE 

A légi lézerszkennelésből (airborne LiDAR – Light Detection and Ranging) nyert adatok zajszűrése a kívánt pon-

tosságú digitális terepmodellelőállításához napjainkban is kihívást jelent. A LiDar pontfelhő számos forrásból 

eredő torzításokat tartalmazhat. Jelen munkában a LiDar adatok előfeldogozásához alkalmas wavelet-alapú eljá-

rást mutatunk be. A wavelet segítségével alacsony felbontási szinten is jól elkülöníthetők a zaj és a jel fontos 

részleteit tartalmazó atomok. Ezekre alkalmazva a robusztus illesztést az extreme értékek, torzítások is eltávolít-

hatók szemben a klasszikus shrinkage eljárásokkal.  

Kulcsszavak: wavelet transzformáció, multirezolúciós felbontás,távérzékelt datok, zajszűrés,robusztus illesztés 
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