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trends. Overall, the article highlights how ML can enable efficient and reliable smart grid systems.
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INTRODUCTION

The smart grid (SG) is an upgraded type of electrical grid that improves reliability, 
security, and efficiency using advanced technology, facilitating real-time communication 
for managing power supply and demand. It promotes the integration of renewable 
energy sources and supports electric vehicles and distributed energy resources, reducing 
reliance on fossil fuels. It also enhances grid resilience and security, potentially 
transforming the electricity sector into a  more sustainable and dependable energy 
system. In the Ahmad et al.’s (2007) review,1 they highlight the unique challenges arising 
from the growing integration of energy storages and renewable energy sources into the 
conventional power systems and AI. This shift requires forward-thinking investments 
in SG technologies, integrating advanced measurement equipments, controllable 
transmission assets, and software control systems. Kwak and Heo (2007) stress the 
importance of creating a  resilient and adaptable infrastructure capable of responding 
to both internal and external changes, given the intricate interconnectedness of 
modern infrastructure systems, which can magnify the impact of local disruptions into 
broader cascade failures.2 The vision for the SG, as presented by Bari et al. (2014),3 is of 
a profound transformation in the electric power sector. This transformation centres on 
the integration of bidirectional power and information flows, addressing critical factors 
like capacity, efficiency, reliability, sustainability, consumer engagement, and the ever-
growing energy demand. It promotes a range of generation and storage solutions, and 
advocates for environmentally responsible practices.4 Ardito et al. (2013) add that the 
development of the SG entails enhancing the existing network with new features and 
services while preserving the core physical infrastructure, marking a significant stride 
toward a more resilient and adaptable power system.5 The conventional electricity grid, 
often referred to as the legacy or analogue grid, functions as a one-way system in which 
electricity is centrally generated and transmitted to consumers via long-distance lines. 
In contrast, the SG is a modernised grid that harnesses advanced digital technology to 
enhance the power system’s reliability, security, and efficiency.

1 Ahmad et al. 2022.
2 Kwak–Heo 2007.
3 Bari et al. 2014.
4 Mei–Chen 2013.
5 Ardito et al. 2013.
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Figure 1: Overview of an SG implementation
Source: compiled by the authors based on an adaptation from Ahmad et al. 2022.

The SG stands out due to four key features: bidirectional communication, facilitating real-
time monitoring and management of electricity supply and demand; integration of RESs 
such as solar and wind; support for electric vehicles and distributed energy resources. It 
reduces dependency on fossil fuels, and enhances environmental sustainability. Moreover, 
robust security measures provide protection against potential threats. Figure 1 visually 
demonstrates the information and energy flow within the SG infrastructure, a  concept 
absent in the traditional power system.

In the context of modern SGs, Berghout et al. (2022) emphasise the critical importance 
of condition monitoring, which is facilitated by cutting-edge computing technology and 
secure cyber-physical connectivity.6 ML, and particularly deep learning (DL), has rapidly 
advanced and demonstrated exceptional performance in various SG-related activities, as 
highlighted by Xu et al. (2022).7 The transition from traditional power distribution systems, 
which relied on human intervention, to more robust SGs has played a crucial role in ensuring 
reliable power delivery, as discussed by Elbouchikhi et al. (2021).8 Effectively processing 
the extensive data within SGs, required for tasks such as power flow optimisation and 
system monitoring, necessitates dynamic energy management, as elucidated by Hossain et 
al. (2019).9 ML and DL techniques offer valuable tools for SG development, encompassing 
three key phases: the constituting element phase, the process phase, and the power 

6 Berghout et al. 2022.
7 Xu et al. 2022.
8 Elbouchikhi et al. 2021.
9 Hossain et al. 2019.
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converter stage, as discussed by Behara and Saha (2022).10 However, developments such 
as the integration of prosumers into SGs, power system decarbonisation using blockchain 
and artificial intelligence (AI), and the functionalities of various SG applications represent 
both challenges and opportunities, as highlighted by Hua et al. (2022).11 Applications of 
SG include such aspects as demand response initiatives, automated data processing for 
SCADA systems, voltage stability assessment, smart city planning, and home automation, 
as noted by Chaurasia and Kamath (2022).12 The possible sources of disruption, including 
harmonic production, load variations, and wiring and grounding issues pose risks to the 
electricity supply system, as explained by Rangel-Martinez et al. (2021).13 Widespread 
implementation of advanced technologies like 5G and specialised algorithms plays a pivotal 
role in developing ML-based sustainable non-industrial energy management applications, 
as outlined by Omitaomu and Niu (2021).14 Security issues in SGs, particularly the threat of 
false data attacks, have substantial implications and are a subject of concern, as addressed 
by Cui et al. (2020).15

Figure 2: Machine learning’s role in SG
Source: compiled by the authors based on an adaptation from Ahmad et al. 2022.

10 Behara–Saha 2022.
11 Hua et al. 2022.
12 Chaurasia–Kamath 2022.
13 Rangel-Martinez et al. 2021.
14 Omitaomu–Niu 2021.
15 Cui et al. 2020.
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Additionally, concerns about cybersecurity emerge due to the heavy reliance of SGs on 
communication technologies, while the management of extensive data volumes for privacy 
and analytical purposes presents an additional obstacle. Enhancing grid resilience to 
natural disasters, achieving regulatory standardisation, fostering consumer engagement, 
addressing the high initial infrastructure costs, and seamlessly integrating diverse 
energy resources constitute critical areas for enhancement. Making sufficient progress 
in these domains requires collaborative efforts among stakeholders and advancements in 
technology to facilitate the widespread adoption of sustainable electricity grids. In this 
regard, Raza and Khosravi (2015) review techniques for developing SGs and building load 
demand forecasting based on AI, with Figure 2 illustrating the various applications of AI, 
computational intelligence, and ML across different aspects of SG.16

METHODOLOGY

This section presents an overview of the classification and research methodology 
employed in the comprehensive review study. It first explicitly delineates the primary 
taxonomy of the article, followed by an explanation of the process utilised for information 
gathering and conducting related investigations. The section is structured into six 
main segments, including an introduction, details of the study’s execution, its primary 
objectives, a review of studies focusing on energy demand forecasting, the introduction 
of evaluation criteria, and a  presentation of research findings. The central focus of this 
review is the examination of machine learning applications in smart grids (SGs). The 
study follows the PRISMA standard for data collection, which consists of four essential 
phases: identification, screening, eligibility, and inclusion. Initially, a total of 550 articles 
were identified, and following a rigorous evaluation, 89 articles were chosen for in-depth 
analysis, constituting the qualitative and quantitative foundation of the study. Figure 3 
offers a visual representation of the flowchart illustrating the PRISMA technique employed 
in constructing the study’s database.

16 Raza–Khosravi 2015.
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Figure 3: The PRISMA flowchart illustrating the standard search and screening
Source: compiled by the authors.

RESULTS

Artificial Neural Network

Artificial Neural Networks (ANNs) are ML algorithms inspired by the structure of the 
human brain and are thus well-suited for pattern recognition and feature extraction tasks 
in SGs. They are pivotal in load forecasting, fault detection, and energy management 
within SGs, and have been widely adopted by researchers and practitioners. ANNs 
predict electricity demand based on factors such as weather and time, optimising grid 
operations and reducing the need for additional energy generation or storage. They also 
excel at identifying power transmission line faults, enhancing grid performance, and 
preventing outages through sensor data analysis. In energy management, ANNs optimise 
the operation of distributed energy resources, such as photovoltaic panels and wind 
turbines, using historical data and predictive analysis, and thus significantly improving SG 
efficiency, reliability, and sustainability. The creation of ANN networks involves a crucial 
training process with connections and nodes, detailed in Equation (1).17

 (1)

17 Zain et al. 2012.
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The equation provided describes the input value (Ij) from neuron i to neuron j, with Oj 
representing the output value of neuron i. The weight value is denoted as wij, and the 
related bias for neuron j is woj. A simplified representation of a basic ANN approach in 
the presence of related components is depicted in Figure 4. The development of an ANN 
approach typically involves three stages: training, testing, and validation.

Figure 4: The architecture of ANN
Source: compiled by the authors based on an adaptation of a standard ANN.

ANNs find application in SG contexts, such as material selection for dye-sensitised solar 
cells, based on Bhagya Raj et al. (2022).18 These networks have demonstrated their prowess 
at capturing nonlinear relationships even without prior knowledge and exhibit high degree 
of accuracy, with metrics like root mean square error (RMSE), high correlation coefficients, 
and low relative deviation, as exemplified in Li et al.’s (2021) photovoltaic fault detection 
study.19 Recurrent Neural Networks (RNN), incorporating feedback loops, excel at tasks 
such as time-series forecasting but may face challenges with long-term dependencies. 
Convolutional Neural Networks (CNN) are adept at grid-structured data tasks like 
image recognition but may be less effective for non-grid-structured data. Autoencoders 
efficiently handle data compression and noise removal in SG applications, but their 
effectiveness depends on data quality. Common ANN configurations include multi-layer 
perceptrons and the implementation of the back-propagation learning technique. ANNs, 
as described by Jawad et al. (2021), are a  ML technique inspired by biological neurons, 
sharing computational parallels with human brain learning processes.20 Feedforward 
Neural Networks are a  fundamental type, with unidirectional interconnected nodes 

18 Bhagya Raj – Dash 2022.
19 Li et al. 2021.
20 Jawad et al. 2021.
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suitable for basic SG tasks like regression and classification. However, FNNs may struggle 
with complex relationships in nonlinear data. ANNs aim to create links between input and 
output variables through data-driven learning procedures. Additionally, a study by Dong 
et al. (2003) underscored the extensive application of radial basis function networks and 
multi-layer perceptron’s in function approximation, contributing to the development of 
Support Vector Machines (SVMs).

SUPPORT VECTOR MACHINES

SVMs are versatile supervised learning algorithms applied in SGs for both classification 
and regression tasks, addressing such challenges as load forecasting, fault detection, 
and power quality event classification. SVMs excel at handling high-dimensional power 
systems data, being robust to noise, and can perform well even with limited training 
data. They effectively model nonlinear relationships between features, enhancing system 
accuracy. SVM integration in SG applications has the potential to improve power system 
efficiency, reliability, and security when using advanced ML. In SVM, data analysis for 
regression and classification creates reliable prediction models, assigning new instances 
during training. The closest data points to the hyperplane, referred to as support vectors, 
influence both the hyperplane’s position and orientation. It is essential to maximise the 
margin, which is the distance between the support vectors and the hyperplane, when 
selecting the hyperplane. Even a slight alteration in the position of these support vectors 
can change the hyperplane. Nu-SVM introduces the “nu” parameter, providing flexibility 
in controlling support vectors and errors. Despite offering a  more intuitive trade-off, 
selecting an appropriate “nu” value involves difficulties, with interpretations varying across 
datasets. Equation (2) represents any hyperplane as the set of desired points, as explained 
by Blanco et al. (2022).21

,  (2)

Here,  is the standard vector to the hyperplane.  represents the offset value of the 
hyperplane from the origin along the normal vector.

Within SVM, two types of margins are considered: soft margins and hard margins. The 
concept behind the soft margin is to permit SVM to make minor errors, thus enabling the 
widest possible margin to correctly classify other data points. Linear-SVM seeks optimal 
class separation through a hyperplane, maximising the margin with support vectors. It 
excels at high-dimensional spaces for approximately linear relationships but is less effective 
with complex, nonlinear data and is sensitive to outliers. This approach leads to a distinct 
optimisation problem, as shown in equation (3).22

21 Blanco et al. 2022.
22 Ranganathan et al. 2011.
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  (3)

In this context, λ represents the trade-off between the margin size increase and the 
requirement for xi to remain on the current side of the margin. Nonlinear-SVM with 
Kernels extends linear SVM, effectively capturing complex relationships through higher-
dimensional transformations. It is versatile in scenarios with nonlinear boundaries 
and its performance relies on kernel selection, which raises challenges and increased 
computational costs. Support Vector Regression adapts SVM for regression, effectively 
minimising deviations within a specified margin and handling nonlinear relationships. It is 
robust to outliers. It demands careful parameter selection, particularly with large datasets. 
Various studies have highlighted the versatility of SVMs in different applications. Diana et 
al. (2019) emphasised the adaptability and high accuracy of SVMs for electromyographic 
signal classification.23 Multiclass-SVM expands binary SVM for multiple classes, utilising 
one-vs-one or one-vs-all strategies. It is versatile for scenarios with more than two classes, 
while its performance is strategy-dependent, with heightened computational costs for 
additional classes.

EXTREME LEARNING MACHINE

Extreme Learning Machine (ELM) is a widely used ANN in SGs due to its quick training 
and high accuracy. ELM plays a pivotal role in predicting energy consumption, improving 
load forecasting, and enhancing grid stability in SGs. ELM functions as a single-hidden 
layer feedforward NN, featuring randomly assigned input weights and biases, and 
exclusively learning output weights. It emphasises swift training with a fixed hidden layer. 
It can optimise grid operations by forecasting energy demand based on weather and time. 
ELM can also detect system failures, such as power line faults, preventing outages and 
improving overall grid performance. Additionally, ELMs are valuable for real-time network 
retraining, although they may not match the accuracy of CNNs, as shown in equation (4).24

 (4)

L is the number of hidden or covert units in the NN. N is the number of training samples or 
data points. β represents the scaled vector between the hidden layer and the output layer, ω 
represents the scaled vector between the input layer and the hidden layer, g is an activation 
function applied to the output of the hidden layer, b is a  bias vector typically added to 
the output of the hidden layer, while x is the input vector to the NN. Zheng et al. (2022) 

23 Diana et al. 2019.
24 Mishra et al. 2022.
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conducted a  review of ELM in data stream classification, emphasising its effectiveness, 
universal approximation capabilities, and simplicity.25 Mohanty et al. (2021) proposed 
a hybrid model combining kernel ELM and an autoencoder for financial market prediction, 
which exhibited improved profitability analysis compared to traditional methods.26 
ELM has proven to be computationally efficient for extensive datasets, particularly in 
big data applications. Its advantages include reduced overfitting through hidden layer 
randomisation and faster training times compared to traditional neural networks. 
Yaseen et al. (2019) used ELM for river flow forecasting and water resource management, 
enhancing prediction accuracy through orthogonal decomposition.27 ELM has limitations 
such as potential constraints on model interpretability and potential performance gaps 
in complex tasks requiring deep hierarchical feature learning. Additionally, the absence 
of iterative tuning in the hidden layer may restrict its adaptability to specific data types. 
Kariminia et al. (2016) applied ELM to analyse visitors’ thermal comfort in public spaces, 
achieving precise predictions and reducing training time.28

Dou et al. (2022) identified a vulnerability in power system state estimators with a new 
cyber-attack called a  false data injection (FDI) attack, using online sequential ELM.29 
Dewangan et al. (2022) proposed an enhanced ELM model for forecasting the stability 
of cyber-physical systems in SGs, considering technical and socioeconomic factors that 
could impact their stability.30 Zhang et al. (2020) improved intrusion detection in SGs by 
applying a genetic algorithm ELM, enhancing accuracy and reducing false positives.31 Naz 
et al. (2019) enhanced the recurrent-ELM model’s scalability and prediction accuracy, 
especially with larger datasets.32 Duo et al. (2019) employed a  hybrid model combining 
Variational Mode Decomposition and online sequential ELM for FDI attack detection in 
SGs.33 Xue et al. (2019) introduced a predictive recovery technique for addressing incorrect 
data using geographical power data correlation to enhance system resilience.34 Li et al. 
(2018) proposed an intrusion detection system using online sequential extreme learning, 
optimised with the artificial bee colony-differential evolution algorithm, achieving a 95.3% 
accuracy rate for detecting bogus data injection attacks.35

25 Zheng et al. 2022.
26 Mohanty et al. 2021.
27 Yaseen et al. 2019.
28 Kariminia et al. 2016.
29 Dou et al. 2022.
30 Dewangan et al. 2022.
31 Zhang et al. 2020.
32 Naz et al. 2019.
33 Dou et al. 2019.
34 Xue et al. 2019.
35 Li et al. 2018.
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DECISION TREE

Decision Trees (DT) are widely used in SGs due to their simplicity, interpretability, and 
versatility in handling various data types. DTs have diverse applications in SGs, including 
load forecasting, fault detection, and energy management. They predict electricity demand 
based on factors such as weather and time, allowing grid operations to be optimised, and 
reducing the need for extra energy generation or storage. DTs also help detect power line 
faults, improving grid performance. In energy management applications, DTs optimise 
the operation of distributed energy resources, maximising their contribution. When 
used in SGs, DTs can enhance efficiency, reduce costs, and enhance grid reliability and 
sustainability. Figure 6 illustrates the DT workflow, and DT algorithms apply equations 
like (5) for classification and (6) for regression.36

 (5)

 (6)

Where, fi is the frequency of label i at a node and c is the number of unique labels, yi  is the 
label for an instance, N is the number of instances and µ is the mean given by .

Jena and Dehuri (2020) explored the role of data mining in prediction, encompassing 
regression and classification.37 DTs are preferred for their simplicity and effectiveness, but 
their complexity grows with larger datasets, often requiring advanced algorithms. Zekić-
Sušacand Knežević (2021) investigated the Classification and Regression Tree Algorithm 
(CART) and its relevance to energy cost.38 Kadiyala and Kumar (2018) used Python to 
assess various DT-based boosting algorithms and found extreme gradient boosting to 
perform best.39 Subramaniam et al. (2017) compared CARTs and Conditional Inference 
Trees (CTree) in terms of subgroup identification and prediction accuracy.40 Peng et al. 
(2017) emphasised CART’s significance in cocaine reward research.41 Heidari et al. (2013) 
introduced a hybrid DT and discrete wavelet transform model to facilitate the detection 
of islanding in distributed systems.42 DT models have also been applied for the transient 
security assessment (TSA) of power systems.43

Turanzas et al. (2022) introduced an event detection algorithm for the SG focused 
on identifying the status and location of attacked devices. They employed two DTs to 
improve event detection accuracy, achieving 80.59% accuracy for status prediction and 

36 Achlerkar et al. 2016.
37 Jena–Dehuri 2020.
38 Zekić-Sušacand–Knežević 2021.
39 Kadiyala–Kumar 2018.
40 Subramaniam et al. 2017.
41 Peng et al. 2017.
42 Heidari et al. 2013.
43 Niazi et al. 1999.
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maintaining 79.39% for location prediction using the nested FDI algorithm.44 Da Cunha et 
al. (2022) employed the DT algorithm to analyse power system stability in SGs, achieving 
a remarkable degree of accuracy of 93% when identifying small signals within the system.45 
Tehrani et al. (2020) utilised DTs, Random Forest (RF), and gradient boosting algorithms 
to detect non-technical losses in power consumption data, achieving accuracy rates of 
87%, 88.1%, and 88.6% for DT, RF, and gradient boosting, respectively.46 Taghavinejad 
et al. (2020) stressed the significance of IoT security in SGs and proposed a hybrid DT 
method with 83.14% accuracy in detecting technical losses, outperforming DT, KNN, and 
SVM with accuracy rates of 80.90%, 79.12%, and 78.52%, respectively. Eissa et al. (2019) 
compared DT’s role in load optimisation to other methods, noting its efficient management 
of local heat ventilation and air conditioning units.47 Radoglou-Grammatikis et al. (2019) 
introduced an intrusion detection system based on DT for safeguarding advanced metering 
infrastructure, achieving high accuracy and a true positive rate.48 Wang and Kong (2019) 
enhanced air quality predictive modelling in a “weather-smart grid” through DT-based 
techniques.49 Singh and Govindarasu (2018) presented an intelligent remedial action 
scheme for detecting cyber-attacks and physical disturbances in the SG.50 Steer et al. (2012) 
demonstrated the effectiveness of DT ensembles, referred to as “forests”, in delivering near-
ideal control strategies in real-time.51

RANDOM FOREST

RF, a widely used ML algorithm, is prominent in the SG industry for its high accuracy 
and ability to handle complex datasets. In SG-related applications, RF excels at load 
forecasting, fault detection, and energy management, optimising grid operations and 
reducing the need for additional energy generation. It also enhances grid performance by 
detecting and diagnosing power transmission line faults and improving sustainability by 
optimising distributed energy resources. The integration of DTs into the RF algorithm to 
make predictions involves the combination of independent DT models through majority 
voting. Gini Importance, as implemented in Scikit-learn, evaluates feature relevance 
in each DT, as illustrated in equations (7) and (8). An overview of the RF algorithm is 
provided in Equation (9).52

44 Turanzas et al. 2022.
45 Da Cunha et al. 2022.
46 Tehrani et al. 2020.
47 Eissa et al. 2019.
48 Radoglou-Grammatikis–Sarigiannidis 2019.
49 Wang–Kong 2019.
50 Singh–Govindarasu 2018.
51 Steer et al. 2012.
52 Das et al. 2022.
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  (7)

The following formula is used to determine each feature’s relevance on a DT:

  (8)

  (9)

At the RF level, the ultimate feature relevance is determined by finding its average over all 
trees. Calculating the relevance of each attribute for each tree, then dividing that total by 
the number of trees, yields:

  (10)

Where, ni sub(j) = the value of node j, w sub(j) = scaled number of samples reaching node j, 
C sub(j) = the value of the impurity node j, left(j) = toddler node from the left split on node 
j, right(j) =+ toddler node from right split on node j, fi sub(i) = the importance of feature 
i, ni sub(j) = the importance of node j, RFfi sub(i) = the importance of feature i calculated 
from all trees in the RF model, normfi sub(ij) = the normalised feature importance for i in 
tree j, T = total number of trees.

Recently, RF has been successfully applied in water resource applications, offering 
predictive power with simplicity and speed. RF aids in urban surface thermal environment 
analysis53 and enhances high-voltage circuit breaker diagnosis through a  hybrid RF 
and stacked Autoencoder model.54 Its interpretability supports applications requiring 
understanding, and its efficiency and minimal parameter adjustment make it a valuable 
tool.55

LOGISTIC REGRESSION

Logistic Regression (LR) is a widely employed statistical model in the field of SGs, being 
particularly well-suited for classification tasks focused on predicting event probabilities 
based on predictor variables. In SG applications, LR is effective in tasks such as load 
forecasting, fault detection, and energy management, and has gained favour among 
practitioners and researchers. For example, LR can predict the likelihood of power outages 
based on factors including weather and infrastructure age, thus contributing to enhanced 
grid reliability. Furthermore, LR aids in optimising the operation of distributed energy 
resources such as solar panels and wind turbines by predicting their capacity to meet 

53 Xu et al. 2021.
54 Ma et al. 2019.
55 Tyralis et al. 2019.
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electricity demand. In summary, LR enhances efficiency, cost-effectiveness, and grid 
reliability and sustainability in SG. LR algorithms are applied for both classification and 
regression techniques, while Equation (11) embodies the core equation for evaluating the 
LR ML algorithm.56

  (11)

Where, x = input value, y = predicted output, b0 is bias or intercept term, b1 is the coefficient 
for input (x).

Drilling engineering, a  crucial aspect of gas and oil exploration, involves significant 
investments and technological complexities. Deng et al. (2021) used LR algorithms to 
predict the rate of penetration, contributing to the field.57 Hewett et al. (2020) proposed 
a five-factor maximum model for risk prediction with LR in drilling engineering.58 Sun et 
al. (2018) focused on environmental ecosystem monitoring, employing an early-warning 
LR model for timely alerts.59 Additionally, Bashir et al. (2021) found LR to outperform 
other classification algorithms, achieving high precision and accuracy in experiments.60

ANALYSIS AND DISCUSSION

The reliability of various ML algorithms in SG applications can be assessed using 
a dependability score based on performance metric normalisation. Equation (12), developed 
by Band et al. (2022), demonstrates the min-max normalisation process for these metrics, 
ensuring comparability with scores ranging from 0 to 1.61

  (12)

The dependability scores have been divided into four zones for easier interpretation:
1. Low if 0 ≤ YN < 0.25
2. Moderate if 0.25 ≤ YN < 0.5
3. High if 0.5 ≤ YN < 0.75
4. Very high if 0.75 ≤ YN < 1.0

56 Bashir et al. 2022.
57 Deng et al. 2021.
58 Hewett et al. 2020.
59 Sun et al. 2018.
60 Bashir et al. 2021.
61 Band et al. 2022.
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According to the reliability analysis, the most reliable ML algorithm for SG applications 
is ANN. Additionally, ELM, RF, and LR exhibit comparatively high levels of reliability 
within the SG context.

Efficiency analysis

Figure 5 illustrates an efficiency analysis using processing time as a metric for the surveyed 
ML methods, employing min-max normalisation for score comparability shown in 
equation (13).62

  (13)

The equation defines the normalisation of processing time scores using the min-max 
method, yielding scores between 0 and 1, and categorises them into four zones for clarity.

1. Low if 0 ≤ XN < 0.25
2. Moderate if 0.25 ≤ XN < 0.5
3. High if 0.5 ≤ XN < 0.75
4. Very high if 0.75 ≤ XN < 1.0

A lower score signifies faster ML algorithms, with ANN demonstrating the fastest 
performance, while DL and hybrid/ensemble models exhibit reduced speed due to their 
intricate computational structure.

Table 1: Novel studies based on ML-based method in SG

Reference Contribution Application Source ML-based method
Zheng et al.
2021

Addressing the load 
shifting associated with 
demand response

Customer 
incentive pricing

IET SG Sliding time window 
technique, genetic 
algorithm

Jarmouni et al.
2021

Ensuring the safety of 
electricity for consumers 
while maximising the 
integration of RESs

Multiple-
source energy 
management

International Journal 
of Power Electronics 
and Drive Systems

Multilayer 
perceptron network

Liu & Shu
2021

Implementing a hybrid 
ML model to minimise 
false attacks in SGs

Security Computers and 
security

Gradient-based and 
population-based 
algorithm

Gupta et al.
2021

Suggesting a cyber 
detection method for 
recognising cyber 
intrusions in the SG

FDI system International Journal 
of Engineering, 
Transactions B: 
Applications

Intelligent Loop 
Based-ANN

62 Band et al. 2022.
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Reference Contribution Application Source ML-based method
Teekaraman et 
al. 2022

Identifying regression 
losses within the SG

Loss 
identification 
in large-scale 
system

Wireless 
Communications and 
Mobile Computing

LSTM, heuristic 
algorithm, Adaptive 
ARIMA, Linear 
regression

Bao et al.
2022

Optimising the dispatch 
of the SG through 
a multi-objective 
approach

Forecasting the 
actual load

Mobile Information 
Systems

Multi-particle 
swarm optimisation

Wang et al.
2022

Real-time assessment of 
regulatory system risks

Communication 
and data 
security

Journal of Shenyang 
University of 
Technology

CNN-SVM 
classification model

Dou et al.
2022

Evaluating the 
detection accuracy and 
assessing the impact 
of attack intensity and 
environmental noise 
on the performance of 
the SG

FDI attack CSEE Journal of 
Power and Energy 
Systems

Variational Mode 
Decomposition, 
OS-ELM

Dewangan et al. 
2022

Introducing a Genetic 
Algorithm-ELM for 
forecasting the stability 
of cyber-physical systems

Stability 
prediction

Electric Power 
Systems Resiliency: 
Modelling, 
Opportunity, and 
Challenges

Hessenberg 
Decomposition 
ELM, GA-based 
ELM

Zhang et al.
2020

Enhances the accuracy, 
detection rate, and 
precision of intrusion 
detection while 
minimising the false 
positive rate

Intrusion 
detection

Energies Online 
sequential-ELM, 
GA-ELM

Singh & 
Govindarasu
2018

Reducing the impact on 
both system reliability 
and economic factors

Anomaly 
Detection

IEEE Power and 
Energy Society 
General Meeting

Special Protection 
Scheme, Intelligent 
Remedial Action 
Scheme

Steer et al.
2012

Implementing a receding 
horizon controller to 
dynamically adjust the 
output of the SG in real-
time

Online 
operation of SG

Energy Conversion 
and Management

C4.5 algorithm, 
Particle swarm 
optimisation

Ganesan et al. 
2022

Regularly monitoring 
the operational status of 
wearable sensing devices 
in the SG

Human activity 
Recognition

Mathematical 
Problems in 
Engineering

K-means ++ 
algorithm, RF

Chen et al.
2021

Enhancing energy 
efficiency and promoting 
the use of clean energy

Energy 
optimisation

IOP Conference 
Series: Earth and 
Environmental 
Science

 RF

Lin et al.
2020

Enhancing the precision, 
recall rate of fault 
prediction, and reducing 
the rate of negative 
samples

Fault prediction Enterprise 
Information Systems

Voted RF algorithm, 
NSGA algorithm
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Reference Contribution Application Source ML-based method
Moldovan
2021

Categorising the stability 
status of an SG

Stability Lecture Notes in 
Networks and 
Systems

Improved Kangaroo 
Mob Optimisation, 
LR

Manoharan
et al.
2020

Identifying optimal 
solutions for energy 
consumption, distance, 
and cost

Monitoring Energies Binary LR

Mukherjee 
et al.
2020

Developing a cost-
effective solution 
for interconnecting 
electrical and electronic 
devices

Lightweight 
sustainable 
intelligent LF

Sustainable 
Computing: 
Informatics and 
Systems

KNN-regressor 
model, SVM

Naz et al.
2019

Ensuring the 
effectiveness of load 
scheduling and reducing 
prices

Short-term 
electric load and 
price forecasting

Energies Enhanced-LR, 
Enhanced Recurrent 
ELM

Source: compiled by the authors.
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Figure 5: The score for processing speed of ML-based methods used to SG applications
Source: compiled by the authors.

Figure 6 shows the evaluation criteria used in the reviewed papers for ML methods, where 
such metrics as accuracy, precision, recall, correlation coefficient, and various error-
related measurements are prevalent, while specialised or complementary metrics are less 
frequently employed.

Obtaining precise accuracy percentages for different ML algorithms in SG data security 
is challenging due to factors including application, training data quality, problem 
complexity, and hyperparameters. Typically, more complex algorithms, such as ANNs 
and SVMs, tend to achieve higher accuracy compared to simpler ones like DT and KNN. 
However, actual accuracy varies depending on the specific application and data quality. 
It is important to consider factors beyond accuracy, including computational resources, 
model interpretability, and generalisation capabilities. Figure 6 depicts accuracy values, 
highlighting the lower accuracy produced by single ML models (e.g. ANN, DE, binary LR, 
Feed Forward NNs) across various SG applications.
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Figure 6: Comparison of the models’ accuracies
Source: compiled by the authors.

Multiple ML algorithms are useful for SG applications, including LR for continuous value 
predictions, DTs for adaptable classification, RF for ensemble learning, ANN for various 
types of parameter forecasting, SVM for its trade-off between high accuracy and processing 
speed, and ELM for rapid scalability. Selection of the most appropriate algorithm for a task 
hinges on the specific challenges and data attributes within SG contexts.

Figure 7 depicts the allocation of ML methods across diverse SG applications, with ANN 
and RF models being prevalent in security. Additionally, ELM and ANN excel at FDI, 
whereas ELM is predominant in customer incentive pricing, while LR and ANN dominate 
energy management. RF emerges as a  suitable choice for real-time voltage stability 
monitoring in the SG. ML algorithms play a crucial role in optimising Demand Response 
by accurately predicting energy demand in the Grid, thereby enhancing program efficiency 
and grid management. Google’s DeepMind utilises ML for renewable energy integration, 
specifically in wind farms, improving their overall efficiency through advanced wind 
forecasting and turbine optimisation. Predictive analytics powered by ML contribute to 
grid stability and predictive maintenance, proactively identifying potential equipment 
failures. ML is applied for energy theft detection, analysing consumption patterns to 
prevent unauthorised usage. ML models are employed to improve the grid’s resilience 
to natural disasters, simulating and strategising for potential impacts post-events. ML is 
also leveraged for electric vehicle integration, by optimising charging infrastructure and 
alleviating strain on distribution networks. ML is utilised for grid anomaly detection, 
swiftly identifying and responding to cybersecurity threats and unexpected grid behaviour 
in real-time.
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Figure 7: Distribution of the utilisation percentages of various ML techniques in this study 
among diverse application categories within the field of SG
Source: compiled by the authors.

Limitations, challenges, and future trends

The definition of AI varies by time. Therefore, this study instead of reviewing the AI 
methods, enforced limitation to only investigate standard ML methods. The deep 
learning  methods  had been excluded from this study and can be studied in a  future 
research. There are some limitations in the usefulness of ML for SG Applications: 
a) data quality and variability  –  ML models face difficulties due to the quality and 
variability of SG data, affecting their performance as they struggle with inaccuracies and 
fluctuations; b) interpretability –some ML models exhibit inherent complexity, reducing 
their interpretability. This limitation hinders a  clear understanding of decision-making 
processes, which is crucial in critical infrastructure like SGs; c) scalability – the growth 
of SG systems raises concerns about scalability, particularly when handling extensive data 
processing and resource-intensive ML algorithms. The challenges arising from the use 
of ML for SG applications included: A) privacy and ethical concerns – striking a balance 
between the demand for data-driven insights and privacy considerations presents 
a  significant challenge. Careful implementation of privacy-preserving measures and 
ethical considerations is thus essential; B) regulatory compliance – continuous adherence 
to evolving regulations and ensuring compliance with legal frameworks governing ML 
applications in SGs poses an ongoing challenge for system operators and developers; C) 
cybersecurity risks – ML models and the data they handle are susceptible to cyber threats, 
demanding the implementation of robust cybersecurity measures to safeguard against 
potential attacks and breaches. The likely future trends in ML for SG applications may 
include: A) explainable AI- anticipated future ML models in SGs will prioritise enhancing 
interpretability through explainable-AI techniques, fostering transparency and trust in 
decision-making processes; B) edge computing for real-time processing: The integration 
of edge computing with ML in SGs is set to revolutionise real-time data processing at 
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the edge, reducing latency, and enhancing overall system responsiveness; C) federated 
learning – the future may witness the rise of federated learning, emphasising decentralised 
model training across devices. This approach is expected to address privacy concerns 
effectively by keeping sensitive data localised; D) hybrid models – an emerging trend is 
the combination of traditional physics-based models with ML techniques, leading to more 
accurate and robust SG models that leverage the strengths of both approaches.

CONCLUSION

This article studies the ML applications in SGs, conducted a systematic review, introducing 
a novel taxonomy, and carried out a thorough comparative performance evaluation. The 
well-structured taxonomy established a foundation for categorising and comprehending 
various ML approaches within SG context. The performance evaluation not only 
illuminates the strengths and weaknesses of the various ML models but also furnishes 
invaluable insights for practitioners aiming to implement effective solutions in real-world 
SG scenarios. Navigating the intricate landscape of contemporary energy distribution, the 
integration of ML not only becomes a technological imperative but also a transformative 
catalyst, amplifying efficiency, resilience, and sustainability in SG operations. This 
research not only contributes to the academic debate but can also serve as a pragmatic 
guide for engineers, system operators, and policymakers striving to advance and optimise 
SG infrastructures. This research found that the applications of ANNs, ELM and RF 
methods are popular. Looking forward, the findings presented underscore the dynamic 
nature of the field, fostering continual research, development, and collaboration to propel 
innovation and tackle the evolving challenges in SG management.

TABLE OF ACRONYMS

RESs Renewable Energy Resources
SG Smart Grid
ML Machine Learning
KNN K-Nearest Neighbours
DL Deep Learning 
AI Artificial Intelligence
ANN Artificial Neural Network
NN Neural Network
SVM Support Vector Machine
ELM Extreme Learning Machines
DT Decision Tree
CART Classification and Regression Tree Algorithm
CTree Conditional Inference tree
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RF Random Forest
LR Logistic Regression
FDI False Data Injection attack
LSTM Long-Short Term Memory
CNN Convolutional Neural Network
NB Naive Bayes
IoT Internet of Things
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