
AARMS Vol. 13, No. 1 (2014) 31–46.

31

Component based IT interoperability solutions,
a novel approach

MUNK Sándor1

In our days the range of information activities supported by IT equipment, and
the volume of information stored in IT systems is continually growing. So coop-
eration among different organizations is practically impossible without extensive,
meaning preserving information exchange between their IT systems. Practically
all today’s interoperability solutions are based on a previously agreed intermedi-
ary representation (formatted message standard, or standard data elements), but
these solutions have a number of limitations. This paper outlines the foundations
of a novel, component based realization of IT interoperability solutions. For this
reason it summarizes the foundations of IT interoperability, analyses the goals, and
possibilities of component based solutions outlines an architecture of component
based interoperability solutions, and finally determines basics of its components.

Introduction

Due to the evolution of information technology it is continually expanding the range of infor-
mation activities; processes supported by IT equipment, as well as the volume of information
stored in IT systems. Consequently cooperation among different organizations is already
practically impossible, or at least not sufficiently effective without extensive information
exchange (specifically data exchange) between the IT systems of these organizations. This
necessitates that IT systems be able to exchange information without human intervention,
preserving the meaning, that is to say be interoperable. The significance of IT systems’ in-
teroperability is particularly great in such complex systems of organisations as the defence
sector (military forces, law enforcement, disaster management, etc.), public administration,
as well as alliances and regional integrations of such spheres.

Interoperability between IT systems can be assured by dissolving the differences between
the systems, and by meaning preserving transformations between data with different formats,
contents, and interpretations. Practically all interoperability solutions of our days are based on
previously agreed intermediary representations, formatted message standards, or standard data
elements. Traditional IT interoperability solutions typically devolve the tasks of transformation
between different information representations to the relevant IT systems, so the interoperabili-
ty capabilities, functions embodied in these solutions do not become “public property”. Anoth-
er significant problem is, that the adaptation to emerging, and changing information exchange
needs, the improvement of interoperability capabilities are limited, and time–consuming.

Dominant components of IT interoperability solutions are software applications, applica-
tion components that implement meaning preserving transformations. The effective develop-

1 National University of Public Service, Faculty of Military Sciences and Officer Training, Budapest, Hungary,
munk.sandor@uni-nke.hu

10.32565/aarms.2014.1.3

https://doi.org/10.32565/aarms.2014.1.3

32 AARMS (13) 1 (2014)

MUNK Sándor: Component based IT interoperability solutions, a novel approach

ment and maintenance of capabilities flexibly adapting to dynamically changing interopera-
bility needs requires application of state–of–the–art IT development methods, and solutions.
These include, among others, component based, service oriented, or middleware solutions.
From an interoperability point of view the most important properties are: the utilization of
available capabilities, the dynamic expandability, so it seems appropriate to research the ap-
plication of component–based solutions.

The purpose of this paper is to outline a novel, component based realization of IT interop-
erability solutions. For this reason it:

• summarizes the foundations of interoperability, and IT interoperability, the types, lim-
itations, and problems of IT interoperability solutions;

• presents the essence of component based software development, analyses its goals,
and possibilities in IT interoperability solutions;

• finally outlines an architecture of component based interoperability solutions, and de-
termines concepts, types and main attributes of its basic components.

IT interoperability solutions

Interoperability between IT systems is not an end in itself; its objective is to ensure the con-
ditions of operational interoperability, and as a part of this, information interoperability of
organizations, necessary for their effective cooperation. In practice today’s solutions based
on standardization increasingly face implementation barriers and problems. In the following
(based fundamentally on [1], [2], [3], [4], [5]) we summarize the conceptual basics of IT
interoperability, then we introduce the concept, and types of IT interoperability solutions,
finally we analyse the limitations, and problems of these solutions related to characteristics
of interoperability environments of our days.

Basics of interoperability

Different interpretations of interoperability, a concept first appearing in the military sphere,
agree that it is a relation, a mutual capability between or among two or more objects to sup-
port cooperation and interoperation. A fundamental type of interoperability is operational
interoperability between active actors (organisations, forces, etc.), a relation between/among
actors cooperating to achieve a common goal and the overall mutual capability necessary to
ensure successful and efficient cooperation. The preconditions of cooperation and operational
interoperability are different part–capabilities, such as interoperabilities on functional areas
(command, and control, logistics, etc.), as well as information interoperability, and technical
interoperability, which are the basis of any kind of interoperabilities. (see details in [1])

MUNK Sándor: Component based IT interoperability solutions, a novel approach

AARMS (13) 1 (2014) 33

Figure 1. System of interoperability types [1: 129.]

Information interoperability is a key prerequisite for cooperation, for operational in-
teroperability. A fundamental condition of successful and efficient operation of complex
organisations, organisational systems, and groupings is the sufficient level of information
exchange between the components, the sharing and coordinated exploitation of information
necessary for cooperation. According to our interpretation, information interoperability is a
mutual capability of different actors necessary to ensure exchange and common understand-
ing of information needed for their successful cooperation. [1: 128.] This is made up of two
basic components: the ability to exchange information, and the ability of the common under-
standing of information.

During information exchange one party (the sender) converts a portion of its knowledge
into a form suitable for transfer; this representation will be transferred to the other party (the
receiver), who interprets it, and builds into its knowledge. So in fact not the information itself is
transmitted, but a representation, and an “other” information is created based on this represen-
tation. Common interpretation means that the intended meaning of the representation owned by
the source — to the extent necessary for cooperation — equals the interpretation of the receiver.

Information interoperability requires different components, and capabilities. According
to the levels of abstraction of information representations these components can be classified
into three (technical, syntactic, semantic) levels. The technical level is related to the handling
— creation, transmission, delivery — of material (physical) representations carrying infor-
mation. The syntactic level is the level of the intermediary — perceptual or symbolic; tradi-
tional, or technical — representation, handling what is related to the languages, and formats
used during information exchange. Finally the semantic level is the level of meaning carried
by syntactic representations, the systems of concepts, and the knowledge representations
used. To implement information interoperability it is necessary to ensure the conditions of
meaning preserving information exchange on all the three levels.

IT interoperability has become an increasingly important, essential condition of informa-
tion interoperability. Information exchange between cooperating actors increasingly happens
without human assistance (machine to machine = M2M), by direct data exchange between
the actors’ IT systems. During exchange, and if necessary, transformation of data stored,
handled in IT systems, it is necessary to ensure, that source and target data carry the same
meaning, or to be more precise similar enough meaning for cooperation, for all the concerned
actors. So IT interoperability is a mutual capability of IT systems, devices, applications to

34 AARMS (13) 1 (2014)

MUNK Sándor: Component based IT interoperability solutions, a novel approach

send, receive, exchange data — with possible transformations — preserving the meaning
assigned by the primary user community. [2: 105.]

Basics of IT interoperability solutions

In case of IT systems (devices, applications, application components, hereinafter briefly IT
systems) exchanging information with each other, an interoperability problem occurs, when
at some level, there are differences, disagreement in the representations used, or in their
interpretations. If the representations and their interpretations are the same, then nothing is
to be done. However if there are differences, either the capability to use a shared, uniformly
interpreted intermediary representation should be created, or the meaning preserving trans-
formation between different representations should be realized during the process of infor-
mation exchange (communications).

An IT interoperability solution is an IT system, device, application, or application compo-
nent that’s purpose is to resolve heterogeneity between disparate, heterogeneous IT systems,
to ensure conditions of meaning preserving information exchange. Information exchange
between two IT systems is always implemented with the help of a certain intermediary rep-
resentation, which is carried by the communication network used. Meaning preserving trans-
formation, the essential component of the IT interoperability solution, or parts of it can be
implemented in relation to, as a part of the related systems, or independently from them.

The purpose if interoperability solutions, forming part of the systems, interoperability
interfaces, connectors, wrappers is to implement the meaning preserving transformation be-
tween the system’s internal, native representation, and the intermediary representation used.
A given system may be connected to a more collaborative environment, so it can have more
interoperability interfaces to different intermediary representations.

Interoperability solutions that are independent from the related systems — analogously to
appropriate network devices — can be interoperability gateways performing transformations
between intermediary representations used by the different collaborative environments. In
addition to the centralized solution, the necessary transformations can be implemented in a
distributed manner, in the form of an interoperability infrastructure based on the services of
multiple components. Interoperability infrastructure can be a value–added service layer of
the IT network, or an independent middleware layer. The advantage of the system indepen-
dent solutions is that each system may use their own intermediary representation, and do not
have to conform to other systems, to the changes in their range.

Today’s IT interoperability solutions in practice are primarily standardization solutions.
They are based on standards widely accepted, or agreed on by a community of interest for
the different forms, components, and levels of information exchange that in the following
we summarize based on [3]. The essential characteristic of interoperability solutions is based
on global, or community of interest specific standards, established by formal agreements, or
developed from practical experience, and the ability to exchange information by standardized
solutions is the responsibility and task of the cooperating IT systems. Standardization of IT
interoperability affects the three levels of interoperability to varying degrees. The technical
level is characterized by general, widely used solutions, and this gradually covers the syn-
tactic level. At the same time a semantic level dealing with content oriented questions is
basically characterized by community of interest specific solutions.

MUNK Sándor: Component based IT interoperability solutions, a novel approach

AARMS (13) 1 (2014) 35

Today the standardization solutions can be classified into three major groups, including
document format standards, message format standards, and data element standards. Interop-
erability solutions based on document format standards standardize the formats of different
(textual, spreadsheet, drawing, image, audio, and other multimedia) documents exchanged
between IT systems. They do not address the issues of production, processing, transmission,
and reception of these documents.

The basis of interoperability solutions based on message format standards is formatted
messages belonging to semi–structured information. To meet the specific information ex-
change needs of a community of interest, standard messages are defined, which are based on
standardized data elements, message fields, and standardized message structure processable
by IT equipment. Message fields are standardized for each message, but can be re–used in
more messages. Bit–oriented message formats are intended to support time–critical (real–
time and near–real time) information exchange, while character–oriented message formats
support the less or non–time critical information exchange.

Interoperability solutions are based on information exchange data models, which are
based on the set of standardized data elements satisfying all the relevant information ex-
change needs of a community of interest. Data elements describing the characteristics and
relationships of objects, which are subjects of information, are arranged into a single data
model, where each data item can have only one version, specifying the content, format and
possible values. These standardized data elements then can be used both in formatted mes-
sages and during database replication. Meaning preserving transformations between data
models of the different IT systems and the common information exchange data model are the
responsibility of the respective systems. Nowadays different communities of interest have
designed and develop continuously a number of information exchange data models.2

Limitations and problems of IT interoperability solutions

During the examination of specialities of IT interoperability solutions, including their lim-
itations and problems, one cannot abstract from the scope of interoperability to be ensured.
Interoperability problems and the range of applicable solutions of a given IT system are
determined by the characteristics of its interoperability environment. IT interoperability envi-
ronment of a given IT system can be interpreted as all those IT systems (devices), that are in
direct information exchange relation with the given system (without human interaction). IT
interoperability environment includes information (or rather data carrying this information),
handled, or exchanged by the given systems (see details in [4] and [5]).

Today’s existing, as well as planned IT interoperability solutions mostly related to the so–
called elementary interoperability environment, that is characterized by a well defined, per-
manent, close, functional area cooperation, and functional similarity of cooperating partners.
These solutions are based on the same conceptual and methodological basis, the application
of a single common intermediary representation (standardized messages, standardized data
elements). Their implementation requires the following tasks:

• definition of information exchange needs of the given cooperation group;

2 Joint C3 Information Exchange Data Model (JC3IEDM), National Information Exchange Model (NIEM),
Justice Information Exchange Model (JIEM), European Information Exchange Model (EIEM), Aeronautical
Information Exchange Model (AIEM), etc.

36 AARMS (13) 1 (2014)

MUNK Sándor: Component based IT interoperability solutions, a novel approach

• comparison, and reconciliation of the content (interpretation) and format of informa-
tion by different actors, involved in information exchange;

• creation of the intermediary representation used in information exchange, and its
agreed interpretation;

• finally the implementation of the necessary transformations between the internal repre-
sentations of the different actors and the intermediary representation.

Functional similarity implies the identity or similarity of the scope, and content of infor-
mation handled, which facilitates the establishment of the common intermediary representa-
tion, and the implementation of meaning preserving transformation between the internal and
intermediary representations.

In order to maintain interoperability satisfying the requirements, in case of new, emerg-
ing information exchange needs, or changes in existing needs the above tasks should be
cyclically repeated. The main characteristic of interoperability solutions based on common
intermediary representations is the significant turnaround time (measured in half years, or
years), which follows from the time required to reconcile changes, and on the other hand the
implementation of appropriate modifications.

With the expansion of the scope of cooperating partners and the content of coopera-
tion (the range of information exchanged) the implementation opportunities of elementary
interopera bility solutions are gradually narrowing. In case of a so–called complex interopera-
bility environment, that is an extensive cooperation group and widespread information ex-
change with differentiated content, on most communities of interest the possibility to coordi-
nate application domain specific versions of information decreases. Due to specific needs of
different functional, application areas, standardization, and realization of uniform solutions
is limited, particularly on a semantic level. This is because each community of interest has its
own terminologies, which have concepts identical, or partly different to those used by others,
as well as concepts unique to them. Consequently instead of a single intermediary represen-
tation more, complementary, existing parallel to each other intermediary representations are
needed.

In a complex interoperability environment a given IT system is in connection with more
IT systems that are members of more previously known communities of interest, and these
communities develop their interoperability solutions independently of each other, or only a
partially coordinated way. The number of these communities is usually few, rarely greater
than 2–5. IT systems know, and use intermediary representations of more communities of
interest (“they speak several languages”). Conditions of interoperability in this case can also
be created in advance; the appropriate interoperability solution for the given system can be
previously developed, and continuously maintained.

In a complex interoperability environment different intermediary representations in many
cases form a multilevel, hierarchical system. The core of the system is a representation,
which is shared by the whole cooperation (application) area, and ensures the exchange of
information relevant for all, or the majority of cooperating actors. Some parts of intermediate
representations related to specific communities of interest are common with the central rep-
resentation (overlapping it, or are mapped to it), other parts are area–specific.

In case of dynamic interoperability environment a given IT system is also in connection
with IT systems of more communities of interest, but their number is far higher than in the
complex environment of interoperability, their range is dynamically changing, some of them

MUNK Sándor: Component based IT interoperability solutions, a novel approach

AARMS (13) 1 (2014) 37

appear only in relation to a specific task, operation. Consequently, unlike in the case of the two
types mentioned before, conditions of interoperability previously can be ensured only par-
tially, or only in the previously known areas of cooperation. In case of dynamically occurring
cooperation areas of interoperability solutions should only be (fully) implemented and adapted
to the given situation during the phase of the preparation, and/or the execution of the operation.

In dynamic interoperability environments implementation of interoperability requires
other then pre–planned and prebuilt ways, and methods. To describe an adequate capabil-
ity of an IT system in such an environment, a new concept should be introduced. Adaptive
interoperability is a capability of an IT system to ensure the necessary conditions of the
meaning preserving information exchange in a dynamically changing cooperation (interop-
erability) environment with other — previously known or unknown — IT systems, without
IT development efforts, within user defined time limits. [4: 71.]

The overall conclusion is that currently used IT interoperability solutions based on inter-
mediary representation provide an efficient solution only in case of well–defined, long–term
and close cooperation. In addition their development and maintenance requires considerable
coordination and time, they reaction to new information exchange requirements is difficult
and slow. Finally the implementation of the necessary transformations between the internal
and intermediary representations is fully passed on to affected systems.

Component–based approaches and interoperability solutions

In case of some level of heterogeneity of cooperating systems the conditions of interoperable
(meaning preserving) information exchange between IT systems is implemented by IT appli-
cations realizing the transformation of the information flow. These applications, apart from
simple cases, are complex software systems which realize a number of different — syntactic,
semantic, and procedural — transformation functions. For effective and efficient software
development different development approaches, methodologies have emerged, one of which
is component–based software development. In the following (based essentially on [6], [7],
[8] and [9]) we summarize the fundamentals of component–based software development, and
then examine how this approach can be utilized, realized in case of interoperability solutions.

Basics of component–based software development

Component–Based Software Development (CBSD), or Component–Based Software Engi-
neering (CBSE) is a software development methodology, based on the idea of an engineering
approach, which states:

• do not invent, and do not fabricate everything again;
• build on reusable components;
• take, and adapt existing parts, components;
• standardize. [8]
This approach is based on the separation of software system development, and software

components development. Accordingly, software systems should be built up (as far as possi-
ble) from prefabricated, existing components, and software components should be developed
so that they can be used in different systems. This approach occupies an intermediate position
between a completely individual development and the use of ready–made solutions.

38 AARMS (13) 1 (2014)

MUNK Sándor: Component based IT interoperability solutions, a novel approach

The basic objective of component–based software development, fitting the line of former
modular programming, structured programming, object–oriented programming, distribut-
ed software development, and other similar methodologies, is faster, more scalable product
manufacturing, matching user needs; ease of modification and expandability; as well as reus-
ability of partial results of development. Component–based software development difficul-
ties include those not easy to find, learn or adapt to the appropriate components, and those
where it is more difficult to make reusable components, then unique ones.

According to a widely accepted definition a software component “is a unit of composition
with contractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by third parties.” [7:
41.] Software components are cohesive units (from some, usually functional, point of view),
implementing specified functionality, loosely coupled with their environment.

The concept of components are strongly connected to such general design, and develop-
ment principles as decomposition, modularity, abstraction, and encapsulation. Effectively
usable components can be developed by decomposition — that is division into more manage-
able parts — of complex systems (functions). During decomposition the intent is to increase
the strength of internal relationships, and reduce external dependencies. For their users the
components are abstractions of a particular function, or group of functions, whose quality
significantly determines the usability of the component. Finally the components, by encap-
sulation, include data and procedures necessary to accomplish the functions provided, at the
same time hiding the details from their users.

Software component interfaces are those means between the users and the component
that enable the interconnection. Technically an interface is a set of operations that can be
invoked by clients. Each operation’s semantics is specified and this “contract” is normative
for the users and for the developer of the component too. Specification of an interface is
an abstract description of functionality; services provided by the component can be infor-
mal, formal, and mixed. A specification always contains functional aspects, usually includes
pre– and postconditions of operations and possibly extra–functional elements (performance,
capacity, availability, security information, and environmental requirements) too. [7: 50–57.]

Software component models and infrastructures (frameworks) are fundamental con-
ditions of component–based software development. Component–based systems rely upon
well–defined standards and conventions (component model) and a support infrastructure. A
component model is a set of rules that determines the framework of a component’s develop-
ment (forms of communication, data representation, conditions of deployment, etc.), while
a component infrastructure is a platform, on which the components ‘work’ and which pro-
vides different (e.g. communication, or resource management) services to the components.
[9: 23–25.] In practice many different software component models and related infrastructures
have evolved.3

In addition to dissimilarities, there are many similarities among component–based ap-
proaches and service–oriented approaches so popular nowadays. Both approaches are based
on loosely coupled, interoperable, reusable components. However, compared with existing
component–based solutions, service–oriented approaches took a step forward, because in
fact they regulate only communication between components and do not contain provisions

3 Microsoft Component Object Model (COM), Microsoft .NET Framework, Enterprise Java Beans (EJB) and
Java Platform Enterprise Edition (J2EE), Common Object Request Broker Architecture (CORBA).

MUNK Sándor: Component based IT interoperability solutions, a novel approach

AARMS (13) 1 (2014) 39

for their language, and platforms. There are also differences in performance and security
between components deployed in their environment and web services available through In-
ternet protocols. Of course, in changing the interfaces, it is possible to implement the func-
tionality of a software component as a web service, or provide a web service in the form of
software component.

Basics of component based interoperability solutions

For the analysis of the application of the component based approach in interoperability
solutions:

• first we overview the arguments for and against this approach and what opportunities
exist;

• then we outline a basic framework of a component based interoperability solution.
The use of component based software solutions are justified, if on the given application

area there exists widely used functions, in many IT systems, products, implementation of
which, in the form of software components can be economical. This is obvious in the case of
interoperability solutions, since most of the systems involved in information exchange use
the same or similar information representations4, and several types of data elements (tempo-
ral characteristics, spatial characteristics, names, etc.) used in many systems.

However this ‘simple’ condition in practice often does not appear to be sufficient. Ac-
cording to experience, the application of the theoretically suitable methodology is mostly
bogged down in the business interests of software product manufacturers and in the diversity
of component architectures. Software solutions implementing the same and similar functions
are typically used only in various products of one manufacturer (and not necessarily in the
form of software components), and not in products of different manufacturers (see e.g. dif-
ferent image and video format converters). The same is the case of existing interoperability
solutions.

Another aspect of the use of component based solutions can be the contribution to specific
capabilities, properties of the software product. The literature formulates a number of system
properties (so called “ilities”), that can be easier, and reliably achieved with component–
based solutions. These include among others extensibility, tailorability, and through these
adaptability (to changes, changing needs).

In case of an appropriate support architecture, by replacing software components, or add-
ing new components, capabilities, services of a component–based system — in a plug–and–
play manner, similar to technical solutions used as examples — can be extended, enhanced
without software development. In the world of interoperability solutions, due to dynamic
changes in cooperating partners and their information exchange requirements, the new and
changing message formats, and data elements, the significance of this option is invaluable.
Limitations of the implementation are first of all the variety of component models and infra-
structures, and the lack of a unified interoperability architecture.

Finally the reason for the component–based solutions can be the special expertise needed
to implement some functions. In case of interoperability, in a lot of application areas there are
(domain specific) knowledge intensive functions, where implementation of software requires

4 EDI, military message formats (Message Text Format, MTF), XML, etc.

40 AARMS (13) 1 (2014)

MUNK Sándor: Component based IT interoperability solutions, a novel approach

not primarily IT, but domain specific expertise. Technical and syntactic level transformations
usually require minimal knowledge of speciality. However semantic level transformations are
basically based on speciality based knowledge, after that their IT implementation — a bit of
exaggeration — is simple, almost mechanical. For example it is the domain experts’ responsi-
bility and capability to determine the order, and rules of transformations between different, but
similar classification attributes, or between dates in different calendar systems. These domain
area expertise functions should be implemented in the form of widely usable components.

The conclusion is that in case of interoperability solutions there exist a number of sub
functions, which play an important role in many, or almost every system, so their implemen-
tation in form of reusable components could provide significant benefits. Without a detailed
analysis these include for example the decomposition of structured information represen-
tations (e.g. formatted messages, tabular data, etc.) into elements and their relations, or the
meaning preserving transformation between different formats of data elements. In case of in-
teroperability solutions, due to dynamic changes in information exchange requirements and
limitations of solutions based on preliminary coordination, standardization is of the utmost
importance for the role of component–based solutions supporting extensibility, adaptability.
Finally the independent implementation of interoperability components can be justified by
the need of specialized domain knowledge.

The basics of a framework for component–based interoperability solutions can be built
on functional decomposition, partition into functional components of a meaning preserving
information exchange between IT systems. In our opinion two basic dimensions of decompo-
sition are the abstraction levels, and the structural architecture of information representations.

It is easy to see how transformations between technical (physical), syntactic and semantic
representations can lead to different functions, independent in nature, and may form individ-
ual components. In the following — although their role in specific interoperability solutions
(e.g. tactical data links) is significant — we do not deal in detail with components handling
physical representations. This is common in the interoperability literature: in case of analysis
of interoperability solutions the lower levels of information exchange are usually considered
solved, and a communication infrastructure is assumed, that provides an existing bit– or char-
acter–oriented channel for information exchange between cooperating systems.

It is also fairly clear that a meaning preserving transformation of a complete information
exchange unit (document, message, query, response, data stream, etc.) can be decomposed
into transformations of composite and elementary information units. Software structure de-
termined by data structure, object–structure has long been used and is a still prevailing ap-
proach of software development. From our point of view it is important to emphasize that
individual information exchange units typically are made up of parts used more than once,
and these parts are built from often used elementary units. Thus software components imple-
menting transformations of intermediate and elementary level representational units may be
ideal for multi–use (reusable) building blocks. Hereinafter — due to reasons of brevity and
differences in characteristics — we do not deal in detail with the issues of interoperable trans-
formations of natural language texts and multimedia representations, our discussions will be
narrowed to structured and semi–structured data, information representations.

In the following we outline a comprehensive model of interoperability solutions that
could form the framework for the analysis of the structure and components of component–
based solutions.

MUNK Sándor: Component based IT interoperability solutions, a novel approach

AARMS (13) 1 (2014) 41

Figure 2. Overall model of interoperability solutions
(Created by the author)

The fundamental input of the interoperability solution — whether it is centralized or
distributed, or part of the system(s) involved, or independent from them — is a given type of
information representation (belonging to source side), and its fundamental output is another
type of information representation (belonging to received side). For processing, and the cre-
ation of particular representations, syntactic and semantic descriptions are needed that can
be provided, published by the involved parties, or may be generated by the interoperability
solution providers.

In many cases permanent specifications are not sufficient for meaning preserving trans-
formation; information from previous process of information exchange may also be needed.
For the period of the information exchange, this information should be temporarily kept by
the interoperability solution.

Architecture of component based interoperability solutions,
interoperability functional units

As outlined in the previous section the basic function of an interoperability solution is to
transform a given type of information representation to another type of information represen-
tation. In case of a component–based implementation to achieve this goal a comprehensive
architecture and its constituent component types must be defined, which form the basis of the
development of components fitting into this framework, and usable in several solutions. In
the following we first outline an interoperability solution architecture, and then determine the
essential features of its functional units.

Architecture of component based interoperability solutions

The functional architecture of interoperability solutions can be determined according to the
three phases of transfer–based solution of computer (machine) translation. Its essence is that:

• with morphological, syntactic and semantic analysis the source text is transformed into
a language–specific intermediate representation;

• source language intermediate representation is transformed into a target language in-
termediate representation;

42 AARMS (13) 1 (2014)

MUNK Sándor: Component based IT interoperability solutions, a novel approach

• finally target language text is generated based on the target language intermediate rep-
resentation.

Since our study is focused on the meaning preserving transformation of structured and
semi–structured data (information representation) and the goal (requirement) is a ‘perfect’
solution, without the loss of information due to application circumstances, statistical transla-
tion techniques – considered nowadays the most popular – based on substantial preliminary
data collection are not feasible. It can be easily stated that analysis (decomposition into com-
ponent parts) and generation (building from component parts) of structured and semi–struc-
tured information representations, in relation to the processing of natural language texts, are
practically not a problem. Based on the foregoing a proposed overall architecture of compo-
nent–based interoperability solutions is shown in the following figure:

Figure 3. Overall architecture of an interoperability solution
(Created by the author)

Key components of the architecture are the two intermediate representations that form a
connecting link between three functional units. The required degree standardization of these
representations is the basic prerequisite of the component–based solution. To facilitate fur-
ther transformations intermediate representations carry the information content of source and
target representations divided into elementary components, in form of elementary statements
related to individuals (objects), their characteristics (properties), and relationships. In case
of structured and semi–structured data any knowledge representation language5 suitable for
description of propositional (statement oriented) information is appropriate for intermedi-
ate representation. According to the literature these knowledge representation types can be
mapped to each other [e.g. 10, 11], however in this paper we are not dealing with this in de-
tail, conversions between different types we consider solved by general purpose components.

Subtasks of an interoperability solution are implemented by three broad functional units.
Two of these, decomposition of the source representation into elementary components and
composition of target representation from elementary components are related to the system
of interpretation (conceptual system) and format rules of a given side; they are independent
of the features, characteristics of the other side. In case of structured (tabular) and semi–
structured data (e.g. formatted messages) realization of the two transformations, based on

5 Resource Description Format ~ W3C Recommendation, Topic Maps ~ ISO 13250, Conceptual Graphs ~ ISO
24707.

MUNK Sándor: Component based IT interoperability solutions, a novel approach

AARMS (13) 1 (2014) 43

database schemas, and message formats, is not a significant problem, it largely encompasses
commonly used sub functions.

The third functional unit, transformation between intermediate representations of the
source and target contexts is the essential component of the meaning preserving transforma-
tion. This functional unit resolves the differences in concepts, interpretations, and formats
of the two contexts. Based on the needs of the application area, the transformation can be
achieved in two ways:

• complete (as possible) transformation of source information into target information;
• production of required target information from the source information available.
Of the two, the second approach is more difficult, because its implementation — in case

of source information is not sufficient — may require additional information. These may
be available in the source environment (but outside of the source representation), or can be
acquired from a general knowledge base, or a knowledge base established specifically for
interoperable transformations.

Transformation between intermediate representations can be divided at syntactic and se-
mantic levels and corresponding functional units. In practice syntactic transformations are
conversions between data values appearing in elementary information, representing the val-
ue of a given characteristic of a given object. In this paper we consider a transformation as
syntactic level transformation when it takes place between two different representations of
the same data element concept6. They also include conversions between composite represen-
tations (e.g. dates, quantities). However we do not consider as syntactic the transformations
between classification characteristics represented by different codes, since actually they are
transformations between class concepts.

Semantic transformations are necessary when there are conceptual differences between
the two parties, such as case transformations between the concepts – including object, charac-
teristic, and relationship concepts – of the two interpretation environment required. Transfor-
mations between concepts and between data values sometimes are connected: to determine
object concept data values (classification, or other characteristics) may be necessary, and
data values (e.g. classification characteristics) may be determined based on object concepts.

Component based interoperability functional units

Basic components of interoperability solutions’ functional architecture outlined on the pre-
vious section are interoperability functional units. A functional unit is a basic concept of IT:
an entity of hardware or software, or both, capable of accomplishing a specified purpose.
[13: 11.] Accordingly an interoperability functional unit is a hardware and/or software entity
whose purpose is to accomplish meaning preserving transformations between different infor-
mation representations.

Interoperability functional units may be IT application/device components, standalone IT
applications/devices, and complex IT systems built on each other and other type functional
units. For extensive usability, the interface of the interoperability functional units can be gen-
eralized in such a way that their input and output consist of bit sequence format information

6 Concept that can be represented in the form of a data element, described independently of any particular
representation. A data element concept is composed of an object class [concept] and a property [concept]. [12:
5., 10.]

44 AARMS (13) 1 (2014)

MUNK Sándor: Component based IT interoperability solutions, a novel approach

representation(s), and globally unique identifiers defining their type. Specifications, knowl-
edge components of this representations (defined by the unique identifiers) may appear, may
be available ‘built in’ to functional units, or independently, in some form of knowledge rep-
resentation.

The following provides a broad, one by one overview of the basic characteristics, features
of functional units implementing decomposition, composition, and transformation, and pos-
sibilities of their implementation in the form of reusable components.

The basic purpose of decomposition and composition functional units is to create elemen-
tary information representations from a composite information representation, and to build
a desired (composite) information representation from elementary representations. During
decomposition data values appearing in representations are extended with data type identi-
fier, and object–, property–, and relationship–type concepts (more accurately with their type
identifiers). In case of structured and semi–structured information representations in practice
we encounter only a few structure types. These include tabular (matrix), and graph (basically
tree) data structures.

In case of decomposition and composition functional units, the most appropriate sub func-
tions to implement as widely reusable components are sub functions that implement syntactic
analysis of the given representation7 (analysing a sequence of symbols according to the rules
of a formal grammar, and building a language data structure), and sub functions of syntactic
generation (building sequences of symbols from a language data structure).8 In case of general
purpose components, for implementation, it is necessary to provide a standardized formal spec-
ification (database schema, or message format specification) of the representation structure.

In case of formatted messages another obvious possibility for component–based imple-
mentation is the decomposition of messages into message parts, and composition of messag-
es from message parts. One of the basic objectives of major message format standards is the
individual standardization of reusable message parts, and data elements. So in case of a new
message, to create an interoperable transformation it is just enough to implement the decom-
position, and composition functional units for the new message parts.

The purpose of syntactic transformation units accomplishing transformations between
source and target intermediate representations is the meaning preserving conversion between
different representations of the same data element concepts. This includes transformations
between different formats of numbers, dates, times, and spatial characteristics, or character
set conversions between textual characteristics. These are already available in the form of
general purpose programs and subroutines. In fact their component–based implementation
is only a question of implementing a suitable interface; it is not a major technical problem.

Transformations between textual (character string) data having internal structure, e.g.
person names9, and organization, organizational unit names, including their different lan-
guage versions form a more interesting, and more significant task. To solve these tasks by
component–based functional units, deeper level knowledge components are needed. Due to
the need of the identification of objects that are of interest, meaning preserving exchange
of name features (appropriate for identification) between different interpretation contexts is
crucial. (in detail see [14]).

7 Parsing.
8 We can meet such solutions (XML parser, MTF parser, etc.) in the practice.
9 Surname (family name), given name, titles, other name parts, etc.

MUNK Sándor: Component based IT interoperability solutions, a novel approach

AARMS (13) 1 (2014) 45

Purpose of semantic transformation units accomplishing transformations between source
and target intermediate representations is the meaning preserving transformation between the
conceptual systems (object, property, and relationship concepts). The background of this task
is provided by the alignment, matching, and mapping of ontologies explicating these concep-
tual systems. This is obviously easier in case of interpretational contexts closer to each other,
and much more difficult in case of more different ones.

Semantic transformation units, by concept categories, may be classified into object con-
cept, property concept, and relationship concept transformation units. These include: organi-
zation concept, activity concept, part–whole concept, etc. transformation units. For transfor-
mation of a given concept, in addition to source and target ontologies, and the concept itself,
additional information is available in the intermediate representation may be needed.

Transformations between source and target concepts are not always feasible clearly, with
complete accuracy, e.g. in case when there are differences between levels of detail of the two
conceptual systems. Moreover conceptual differences between application requirements or
different points of view may also make it difficult, or prevent the ‘transmission’ of meaning.
As a consequence semantic transformations are the most difficult parts of meaning preserv-
ing transformations.

Conclusion

As a conclusion it can be stated that information interoperability is a key prerequisite for
cooperation, for operational interoperability. Moreover IT interoperability is an increasingly
important, essential condition of information interoperability, a mutual capability of meaning
preserving information exchange between IT systems of cooperating actors without human
assistance.

Existing IT interoperability solutions are primarily standardization solutions that can be
classified into three major groups, including document format standards, message format
standards, and data element standards. Currently used IT interoperability solutions based
on previously agreed intermediary representations provide an efficient solution only in case
of well–defined, long–term and close cooperation. In addition their development and main-
tenance requires considerable coordination and time, their reaction to new information ex-
change requirements is difficult and slow.

Component–based software development is an up–to–date approach of software develop-
ment that is based on the separation of software system development, and software compo-
nents development. Its principle is that software systems should be built up (as far as possi-
ble) from prefabricated, existing components, and software components should be developed
so that they can be used in different systems.

The application of component–based software solutions is justified first of all when on the
given application area there exists widely used functions, in many IT systems and products.
Another aspect of the use of component–based solutions can be the contribution to specific
capabilities, properties of the software product (e.g. extensibility, tailorability, and through
these adaptability). Finally the reason for the component–based solutions can be the special
expertise needed to implement some functions.

The basics of a framework for component–based interoperability solutions can be built on
functional decomposition, partition into functional components of a meaning preserving in-

46 AARMS (13) 1 (2014)

MUNK Sándor: Component based IT interoperability solutions, a novel approach

formation exchange between IT systems. In our opinion two basic dimensions of decomposi-
tion are the abstraction levels, and the structural architecture of information representations.
The functional architecture of interoperability solutions can be determined according to the
three phases of transfer–based solution of computer (machine) translation.

Basic components of interoperability solutions’ functional architecture are interopera-
bility functional units, hardware and/or software entities whose purpose is to accomplish
meaning preserving transformations between different information representations. These
have more widely used sub functions which may be effectively and efficiently implemented
in form of reusable components.

References
[1] MUNK S.: An analysis of basic interoperability related terms, system of interoperability

types. Academic and Applied Research in Military Science, I 1 (2002), 117–131.
[2] MUNK S.: Necessity of a military IT interoperability infrastructure. Revista Academiei

Fortelor Aeriene, V 1 (2007), 104–109.
[3] MUNK S.: Katonai informatikai rendszerek interoperabilitásának aktuális hadtudományi

kérdései. MTA doktori értekezés, Budapest: MTA, 2007.
[4] MUNK S.: Concept and necessity of adaptive interoperability in case of military IT systems.

Science & Military, I 1 (2006), 68–73.
[5] MUNK S.: Changes in the military information interoperability environment. Revista

Academiei Forţelor Terestre, X 4 (2005), 39–51.
[6] HEINEMAN, G. T., COUNCILL, W. T. (eds.): Component Based Software Engineering:

Putting the Pieces Together. Boston: Addison–Wesley, 2001.
[7] SZYPERSKI, C.: Component Software: Beyond Object Oriented Programming. 2nd Ed.

Pearson Education, 2002.
[8] CHARAF, H. KONDOROSI K., LÁSZLÓ Z.: A komponens-technológia néhány aktuális

kérdése. In. Szoftvertechnológiai Fórum, Komponens alapú szoftverfejlesztés, NJSZT.
Budapest, 2003.12.04. www.inf.u-szeged.hu/stf/slides/e12.ppt (downloaded: 20 05 2013)

[9] BACHMANN, F., BASS, L., BUHMAN, C., COMELLA-DORDA, S., LONG, F.,
ROBERT, J., SEACORD, R., WALLNAU, K.: Technical Concepts of Component-Based
Software Engineering. Technical Report. Pittsburgh: Carnegie Mellon University, 2000.

 [10] LACHER, M. S., DECKER, S.: On the Integration of Topic Maps and RDF Data. In.
Proceedings of Semantic Web Working Symposium. Palo Alto. August 2001, 331–344.

 [11] DELUGACH, H. S.: Towards Conceptual Structures Interoperability Using Common
Logic. In. Proceedings of the Third Conceptual Structures Tool Interoperability Workshop.
Toulouse, July 2008, 13–21.

 [12] ISO/IEC 11179-1 Information Technology — Metadata Registries (MDR) – Part 1:
Framework. Second Edition. 2004.

 [13] ISO/IEC 2382-1 Information Technology — Vocabulary – Part 1: Fundamental Terms. Third
Edition. 1993.

 [14] MUNK S.: Névjellemzők interoperabilitása katonai informatikai rendszerekben.
Hadmérnök, I 3 (2006), 121–136.

